
WebSphere MQ

Publish/Subscribe User’s Guide

Version 6.0

SC34-6606-00

���

WebSphere MQ

Publish/Subscribe User’s Guide

Version 6.0

SC34-6606-00

���

Note!

Before using this information and the product it supports, be sure to read the general information under Appendix B,

“Notices,” on page 165.

First edition (May 2005)

This edition of the book applies to the following product:

v IBM WebSphere MQ, Version 6.0

and to any subsequent releases and modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 1998, 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Figures vii

Tables ix

About this book xi

Who this book is for xi

What you need to know to understand this book . . xi

How to use this book xi

Terms used in this book xi

Appearance of text in this book xi

Summary of changes xv

Changes for this edition (SC34-6606-00) xv

Part 1. Introduction and system

design 1

Chapter 1. Introduction 3

What is publish/subscribe? 3

What are the components involved? 3

Example of a single broker configuration 4

Example of a multiple broker configuration . . . 4

How does it work? 5

How WebSphere MQ Publish/Subscribe relates to

WebSphere MQ 6

How WebSphere MQ Publish/Subscribe relates to

WebSphere Business Integration Message Broker and

WebSphere Business Integration Event Broker . . . 7

Chapter 2. System design 9

Topics 9

Matching topic strings 9

Streams 10

Broker networks 11

Passing subscription information between

brokers 12

Different types of publication 14

Local and global publications 14

State and event information 14

Retained publications 14

Sample application 15

Part 2. Writing applications 19

Chapter 3. Introduction to writing

applications 21

Message flows 22

Simplified message flow 23

Message ordering 26

Ensuring that messages are retrieved in the

correct order 26

Publisher and subscriber identity 27

Subscription name and identity 28

The message descriptor 29

Messages sent to the broker 29

Publications forwarded by the broker 30

Persistence and units of work 31

Limitations 31

Group messages 31

Segmented messages 32

Cluster queues 32

Data conversion of MQRFH structure 32

Using the Application Messaging Interface 32

AMI publish/subscribe functions 32

Chapter 4. Writing publisher

applications 35

Registering with the broker 35

Choosing not to register 36

Options you can specify when registering as a

publisher 36

Broker restart 37

Changing an application’s registration 37

Publishing information 37

Publication data 37

Retained publications 38

Publishing locally and globally 38

Deleting information 38

Deregistering with the broker 39

Chapter 5. Writing subscriber

applications 41

Registering as a subscriber 41

Subscriber queues 42

Options you can specify when registering as a

subscriber 42

Broker restart 43

Changing an application’s registration 43

Requesting information 43

Requesting information from the broker 43

Requesting information from a publisher . . . 44

Deregistering as a subscriber 44

Chapter 6. Format of command

messages 47

MQRFH – Rules and formatting header 47

Fields 48

Structure definition in C 50

Publish/Subscribe name/value strings 51

Options using string constants 52

Options using integer constants 52

Sending a command message with the RFH

structure 52

Publication data 53

Double-byte character sets 53

© Copyright IBM Corp. 1998, 2005 iii

Chapter 7. Publish/Subscribe command

messages 57

Delete Publication 58

Required parameters 58

Optional parameters 58

Example 58

Error codes 58

Deregister Publisher 60

Required parameters 60

Optional parameters 60

Example 61

Error codes 61

Deregister Subscriber 62

Required parameters 62

Optional parameters 62

Example 64

Error codes 64

Publish 65

Required parameters 65

Optional parameters 65

Example 69

Error codes 69

Register Publisher 70

Required parameters 70

Optional parameters 70

Example 71

Error codes 71

Register Subscriber 72

Required parameters 72

Optional parameters 72

Example 78

Error codes 79

Request Update 80

Required parameters 80

Optional parameters 80

Example 81

Error codes 81

Chapter 8. Error handling and response

messages 83

Error handling by the broker 83

Response messages 84

Message descriptor for response messages . . . 84

Types of error response 85

Broker responses 86

Standard parameters 86

Optional parameters 86

Examples 88

Error codes applicable to all commands 88

Problem determination 88

Chapter 9. Sample programs 91

Sample application 92

Running the application 93

Possible extensions 95

Application Messaging Interface samples 96

Part 3. Managing the broker 97

Chapter 10. Setting up a broker 99

Broker queues 99

System queues 99

Other stream queues 100

Internal queues 101

Dead-letter queue 101

Other considerations 101

Access control 101

Backup 101

Broker configuration stanza 102

Broker configuration parameters 102

Chapter 11. Controlling the broker 107

Starting a broker 107

Using triggering to start the broker 107

Stopping a broker 107

Displaying the status of a broker 107

Adding a stream 107

Creating a stream queue 107

Informing other brokers about the stream . . . 108

Deleting a stream 108

Deleting a stream on an isolated broker . . . 108

Deleting a stream on a broker that is part of a

network 108

Adding a broker to a network 109

Deleting a broker from the network 109

Problems when deleting brokers 110

Deleting a broker that has a child broker . . . 110

Sequence of commands for adding and deleting

brokers 110

Chapter 12. Control commands 113

clrmqbrk (Clear broker’s memory of a neighboring

target broker) 114

dltmqbrk (Delete broker) 117

dspmqbrk (Display broker status) 119

endmqbrk (End broker function) 121

migmqbrk (Migrate broker to WebSphere Business

Integration Brokers) 123

strmqbrk (Start broker function) 125

Chapter 13. Message broker exit . . . 129

Publish/subscribe routing exit 129

Parameters 129

Usage notes 129

Publish/subscribe routing exit parameter

structure 130

Writing a publish/subscribe routing exit program 136

Limitations on WebSphere MQ work done in

the routing exit 136

Security considerations 137

Compiling a publish/subscribe routing exit

program 137

Sample routing exit 137

Part 4. System programming . . . 139

Chapter 14. Writing system

management applications 141

iv WebSphere MQ Publish/Subscribe User’s Guide

Format of broker administration messages 141

Subscription deregistered message 142

Stream deleted message 142

Broker deleted message 142

Stream support messages 143

Children messages 143

Parent messages 143

MQCFH - PCF header 143

Reason codes returned from publish/subscribe

messages 145

PCF Command Messages 146

Delete Publication 147

Deregister Publisher 147

Deregister Subscriber 147

Publish 148

Register Publisher 148

Register Subscriber 149

Request Update 150

Chapter 15. Finding out about other

publishers and subscribers 151

Metatopics 151

Subscribing to metatopics 152

Using wild cards 153

Example requests 153

Authorized metatopics 153

Finding out about brokers 154

Message format for metatopics 154

Parameters 155

Sample program for administration information 157

Operation 158

Example of metatopic information 159

Part 5. Appendixes 161

Appendix A. Header files 163

Appendix B. Notices 165

Trademarks 166

Index 167

Sending your comments to IBM . . . 173

Contents v

vi WebSphere MQ Publish/Subscribe User’s Guide

Figures

 1. Simple publish/subscribe example 4

 2. Publish/subscribe example with two brokers 5

 3. Communication between publishers,

subscribers, and brokers 6

 4. Simple broker hierarchy 11

 5. Propagation of subscriptions through a broker

network 12

 6. Multiple subscriptions 13

 7. Propagation of publications through a broker

network 13

 8. The results service application 16

 9. Basic flow of messages 22

10. Simplified flow of messages 23

11. Flow of messages in a single-broker system 24

12. Flow of messages in a multi-broker system 24

13. Flow of messages using retained publications 25

14. Flow of messages using publish on request

only 25

15. Message descriptor and RFH structure . . . 53

16. Publication data after the RFH structure 54

17. Publishing data within the NameValueString 54

18. User-defined publication data 55

19. Inheriting the CCSID 56

20. Results service running with four match

simulators 95

21. Sample Broker stanza for qm.ini 102

© Copyright IBM Corp. 1998, 2005 vii

viii WebSphere MQ Publish/Subscribe User’s Guide

Tables

1. How to read syntax diagrams xii

2. Fields in MQRFH 47

3. Initial values of fields in MQRFH 50

4. Sample programs for AIX, HP-UX, Linux,

Solaris, and Windows 91

5. Sample programs for iSeries 91

6. Fields in MQPXP 130

7. Parameters for publisher and subscriber

information messages 155

© Copyright IBM Corp. 1998, 2005 ix

x WebSphere MQ Publish/Subscribe User’s Guide

About this book

This book describes how to use WebSphere® MQ Publish/Subscribe.

Who this book is for

This book is for experienced users of WebSphere MQ who want to use WebSphere

MQ Publish/Subscribe. Familiarity with these WebSphere MQ books is assumed:

v WebSphere MQ Application Programming Reference

v WebSphere MQ Application Programming Guide

v WebSphere MQ Programmable Command Formats and Administration Interface

v WebSphere MQ System Administration Guide

What you need to know to understand this book

To use WebSphere MQ Publish/Subscribe you need to have a good knowledge of

WebSphere MQ in general. All the sample programs and header files are in the C

programming language.

How to use this book

This book contains the following parts:

v Part 1, “Introduction and system design,” on page 1 explains what you can do

using WebSphere MQ Publish/Subscribe.

v Part 2, “Writing applications,” on page 19 discusses how to write programs to

use WebSphere MQ Publish/Subscribe.

v Part 3, “Managing the broker,” on page 97 describes how to set up and manage

your brokers.

v Part 4, “System programming,” on page 139 contains information needed to

write system management programs.

Terms used in this book

UNIX® system is used as a general term for any of the following platforms:

v AIX®

v HP-UX

v Linux®

v Solaris

Appearance of text in this book

This book uses the following type styles:

CompCode

The name of a parameter of a call, a field in a structure, or an attribute of

an object

dltmqbrk

A control command or command message

MQRFH

The name of a data type or structure

© Copyright IBM Corp. 1998, 2005 xi

MQPS_COMMAND

The name of a constant

MQPSCommand Publish

Examples

"MQPSTopic"

A character string

How to read syntax diagrams

This book contains syntax diagrams (sometimes referred to as “railroad”

diagrams).

Each syntax diagram begins with a double right arrow and ends with a right and

left arrow pair. Lines beginning with a single right arrow are continuation lines.

You read a syntax diagram from left to right and from top to bottom, following the

direction of the arrows.

Other conventions used in syntax diagrams are:

 Table 1. How to read syntax diagrams

Convention Meaning

�� A B C ��

You must specify values A, B, and C. Required values are shown on

the main line of a syntax diagram.

��

A
 ��

You may specify value A. Optional values are shown below the main

line of a syntax diagram.

�� A

B

C

 ��

Values A, B, and C are alternatives, one of which you must specify.

��

A

B

C

 ��

Values A, B, and C are alternatives, one of which you might specify.

��

�

 ,

A

B

C

��

You might specify one or more of the values A, B, and C. Any

required separator for multiple or repeated values (in this example,

the comma (,)) is shown on the arrow.

��

�

,

A

��

You might specify value A multiple times. The separator in this

example is optional.

About this book

xii WebSphere MQ Publish/Subscribe User’s Guide

Table 1. How to read syntax diagrams (continued)

Convention Meaning

��
 A

B

C

��

Values A, B, and C are alternatives, one of which you might specify.

If you specify none of the values shown, the default A (the value

shown above the main line) is used.

�� Name ��

Name:

 A

B

The syntax fragment Name is shown separately from the main syntax

diagram.

Punctuation and

uppercase values

Specify exactly as shown.

Lowercase values

(for example, name)

Supply your own text in place of the name variable.

Syntax diagrams

About this book xiii

Syntax diagrams

xiv WebSphere MQ Publish/Subscribe User’s Guide

Summary of changes

This section describes changes in this edition of WebSphere MQ Publish/Subscribe

User’s Guide.

Changes for this edition (SC34-6606-00)

v WebSphere MQ Publish/Subscribe is now a part of the main WebSphere MQ

product.

v Platform support has been extended to include iSeries.

v The Broker Configuration tool on Windows® (cfgmqbrk) has been replaced by

the Broker page in WebSphere MQ Explorer.

v Messages and reason codes that were previously in this book have been moved

to the WebSphere MQ Messages book.

v Constants that were previously in this book have been moved to the new

WebSphere MQ Constants book.

v Minor editorial improvements have been made.

v This book is a revision of the MQSeries Publish/Subscribe User’s Guide, Version 1

Release 0.7, GC34-5269-09

© Copyright IBM Corp. 1998, 2005 xv

Changes

xvi WebSphere MQ Publish/Subscribe User’s Guide

Part 1. Introduction and system design

Chapter 1. Introduction 3

What is publish/subscribe? 3

What are the components involved? 3

Example of a single broker configuration 4

Example of a multiple broker configuration . . . 4

How does it work? 5

How WebSphere MQ Publish/Subscribe relates to

WebSphere MQ 6

How WebSphere MQ Publish/Subscribe relates to

WebSphere Business Integration Message Broker and

WebSphere Business Integration Event Broker . . . 7

Chapter 2. System design 9

Topics 9

Matching topic strings 9

Streams 10

Broker networks 11

Passing subscription information between

brokers 12

Different types of publication 14

Local and global publications 14

State and event information 14

Retained publications 14

Sample application 15

© Copyright IBM Corp. 1998, 2005 1

2 WebSphere MQ Publish/Subscribe User’s Guide

Chapter 1. Introduction

This chapter explains what WebSphere MQ Publish/Subscribe is and introduces

the concepts and terminology used in this manual. It contains the following topics:

v “What is publish/subscribe?”

v “How does it work?” on page 5

v “How WebSphere MQ Publish/Subscribe relates to WebSphere MQ” on page 6

v “How WebSphere MQ Publish/Subscribe relates to WebSphere Business

Integration Message Broker and WebSphere Business Integration Event Broker”

on page 7

What is publish/subscribe?

WebSphere MQ Publish/Subscribe allows you to decouple the provider of

information from the consumers of that information.

Before a standard WebSphere MQ application can send some information to

another application, it needs to know something about that application. For

example, it needs to know the name of the queue to which to send the

information, and might also specify a queue manager name.

WebSphere MQ Publish/Subscribe removes the need for your application to know

anything about the target application. All it has to do is send information it wants

to share to a standard destination managed by WebSphere MQ Publish/Subscribe,

and let WebSphere MQ Publish/Subscribe deal with the distribution. Similarly, the

target application does not have to know anything about the source of the

information it receives.

What are the components involved?

The provider of the information is called a publisher. Publishers supply information

about a subject, without needing to know anything about the applications that are

interested in the information.

The consumer of the information is called a subscriber. The subscriber decides what

information it is interested in, and then waits to receive that information.

Subscribers can receive information from many different publishers, and the

information they receive can also be sent to other subscribers.

The information is sent in a WebSphere MQ message, and the subject of the

information is identified by a topic. The publisher specifies the topic when it

publishes the information, and the subscriber specifies the topics on which it wants

to receive publications. The subscriber is sent information about only those topics

it subscribes to.

Interactions between publishers and subscribers are all controlled by a broker. The

broker receives messages from publishers, and subscription requests from

subscribers (to a range of topics). The broker’s job is to route the published data to

the target subscribers.

Related topics can be grouped together to form a stream. Publishers can choose to

use streams, for example to restrict the range of publications and subscriptions that

© Copyright IBM Corp. 1998, 2005 3

a broker has to support, or to provide access control. The broker has a default

stream that is used for all topics that do not belong to another stream.

The broker uses standard WebSphere MQ facilities to do this, so your applications

can use all the features that are available to existing WebSphere MQ applications.

This means that you can use persistent messages to get once-only assured delivery,

and that your messages can be part of a transactional unit-of-work to ensure that

messages are delivered to the subscriber only if they are committed by the

publisher.

Example of a single broker configuration

Figure 1 illustrates a basic broker configuration. The example shows the

configuration for a news service, where information is available from Publishers

about several topics within a single stream:

v Publisher 1 is publishing information about sports results using a topic of Sport

v Publisher 2 is publishing information about stock prices using a topic of Stock

v Publisher 3 is publishing information about film reviews using a topic of Films,

and about television listings using a topic of TV

Three subscribers have registered an interest in different topics, so the broker sends

them the information that they are interested in:

v Subscriber 1 receives the sports results and stock prices

v Subscriber 2 receives the film reviews

v Subscriber 3 receives the sports results

None of the subscribers have registered an interest in the television listings, so

these are not distributed.

Example of a multiple broker configuration

You can have only one broker on each WebSphere MQ queue manager; however,

brokers can communicate with other brokers in your WebSphere MQ system, so

subscribers can subscribe to one broker and receive messages that were initially

published to another broker. This is illustrated in Figure 2 on page 5.

In this example, a second broker has been added.

BROKER

Subscriber 3
Topic:
Sport

Subscriber 2
Topic:
Films

Publisher 1
Topic:
Sport

Publisher 2
Topic:
Stock

Publisher 3
Topics:

Films, TV

Subscriber 1
Topics:

Sport, Stock

Figure 1. Simple publish/subscribe example. This shows the relationship between publishers, subscribers, and brokers.

What is publish/subscribe?

4 WebSphere MQ Publish/Subscribe User’s Guide

v Broker 2 is used by Publisher 4 to publish weather forecast information, using a

topic of Weather, and information about traffic conditions on major roads, using

a topic of Traffic.

v Subscriber 4 also uses this broker, and subscribes to information about traffic

conditions using topic Traffic.

v Subscriber 3 also subscribes to information about weather conditions, even

though it uses a different broker from the publisher. This is possible because the

brokers are linked to each other.

A publication is propagated to another broker only if a subscription to that topic

exists on the other broker.

How does it work?

Publishers, subscribers, and brokers communicate with each other using command

messages. These messages are used to do the following things:

Publisher and broker

The following communications take place between publishers and brokers:

1. A publisher can register its intention to publish information about

certain topics (this is optional: registration can take place with the first

publication, or not at all, as described in “Registering with the broker”

on page 35).

2. A publisher sends publication messages to the broker, containing the

publication data (or referring to it). The messages can be forwarded

directly to the subscribers, or, in the case of retained publications, be

held at the broker until requested by a subscriber.

3. A publisher can send a message to the broker requesting that a retained

publication held at the broker be deleted.

4. A publisher can deregister with the broker when it has finished sending

messages about a certain topic.

These interactions are all described in Chapter 4, “Writing publisher

applications,” on page 35.

Subscriber and broker

The following communications take place between subscribers and brokers:

1. A subscriber registers with a broker, specifying the topics that it is

interested in.

BROKER 1

Subscriber 3
Topics:

Sport, Weather

Subscriber 2
Topic:
Films

Publisher 1
Topic:
Sport

Publisher 2
Topic:
Stock

Publisher 3
Topics:

Films, TV

Subscriber 1
Topics:

Sport, Stock

Subscriber 4
Topics:
Traffic

Publisher 4
Topics:

Weather, Traffic

BROKER 2

Figure 2. Publish/subscribe example with two brokers

What is publish/subscribe?

Chapter 1. Introduction 5

2. The broker sends to the subscriber subsequent publications that match

the topics specified. Alternatively, the subscriber can request retained

publications held at the broker.

3. The subscriber can deregister with the broker for certain topics when it

is no longer interested in them.

These interactions are all described in Chapter 5, “Writing subscriber

applications,” on page 41.

Broker and broker

The following communications take place between brokers:

1. Brokers can exchange subscription registrations and deregistrations.

2. Brokers can exchange publications, and requests to delete publications.

3. Brokers can exchange information about themselves.

These interactions are illustrated in Figure 3.

How WebSphere MQ Publish/Subscribe relates to WebSphere MQ

WebSphere MQ Publish/Subscribe is a function of WebSphere MQ. The broker

runs on WebSphere MQ for AIX, HP-UX, iSeries™, Linux, Windows, and Solaris. It

uses standard WebSphere MQ facilities (but note that it does not support message

groups or segmented messages).

You can have one broker on each WebSphere MQ queue manager. The broker uses

the same name as the queue manager.

(Register Publisher)

Publish

Delete Publication

Deregister Publisher

Register Subscriber

Request Update

Deregister Subscriber
Publish

Register Subscriber
Deregister Subscriber
Publish
Delete Publication

Broker 1

Subscriber

Broker 2

Publisher

Figure 3. Communication between publishers, subscribers, and brokers

How does it work?

6 WebSphere MQ Publish/Subscribe User’s Guide

Applications can be written with standard WebSphere MQ programming

techniques, using the Message Queue Interface (MQI) or the Application

Messaging Interface (AMI).

Publishers and subscribers do not have to be on the same machine as a broker.

They can reside anywhere in the network, provided that there is a route from their

queue manager to the broker. So, for example, you could have a publisher on

z/OS® and a subscriber on Solaris.

How WebSphere MQ Publish/Subscribe relates to WebSphere

Business Integration Message Broker and WebSphere Business

Integration Event Broker

WebSphere Business Integration Message Broker and WebSphere Business

Integration Event Broker work with WebSphere MQ messaging, extending its basic

connectivity and transport capabilities to provide a powerful message broker

solution driven by business rules. Messages are formed, routed, and transformed

according to the rules defined by an easy-to-use graphical user interface.

Diverse applications can exchange information in unlike forms, with brokers

handling the processing required for the information to arrive in the right place in

the correct format, according to the rules you have defined. The applications have

no need to know anything other than their own conventions and requirements.

Applications also have much greater flexibility in selecting which messages they

want to receive, because they can specify a topic filter, or a content-based filter, or

both, to control the messages made available to them.

WebSphere Business Integration Message Broker and WebSphere Business

Integration Event Broker provide a framework that supports supplied, basic,

functions along with plug-in enhancements, to enable rapid construction and

modification of business processing rules that are applied to messages in the

system.

WebSphere Business Integration Message Broker and WebSphere Business

Integration Event Broker address the needs of business and application integration

through management of information flow. It provides services based on message

brokers to allow you to do the following:

v Route a message to several destinations, using rules that act on the contents of

one or more of the fields in the message or message header.

v Transform a message, so that applications using different formats can exchange

messages in their own formats.

v Store and retrieve a message, or part of a message, in a database.

v Modify the contents of a message (for example, by adding data extracted from a

database).

v Publish a message to make it available to other applications. Other applications

can choose to receive publications that relate to specific topics, or that have

specific content, or both.

v Create structured topic names, topic-based access control functions,

content-based subscriptions, and subscription points.

How WebSphere MQ Publish/Subscribe relates to WebSphere MQ

Chapter 1. Introduction 7

v Exploit a plug-in interface to develop message processing node types that can be

incorporated into the broker framework to complement or replace the supplied

nodes, or to incorporate node types developed by Independent Software

Vendors (ISVs).

v Enable instrumentation by products such as those developed by Tivoli®, using

system management hooks.

The benefits of WebSphere Business Integration Message Broker and WebSphere

Business Integration Event Broker can be realized both within and beyond your

enterprise:

v Your processes and applications can be integrated by providing message and

data transformations in a single place, the broker. This helps reduce costs of

application upgrades and modifications.

v You can extend your systems to reach your suppliers and customers, by meeting

their interface requirements within your brokers. This can help you improve the

quality of your interactions and allow you to respond more quickly to changing

or additional requirements.

How WebSphere MQ Publish/Subscribe relates to WebSphere Business Integration

Message Broker and WebSphere Business Integration Event Broker

8 WebSphere MQ Publish/Subscribe User’s Guide

Chapter 2. System design

This chapter discusses the things that you need to consider when you design your

WebSphere MQ Publish/Subscribe system. It contains the following topics:

v “Topics”

v “Streams” on page 10

v “Broker networks” on page 11

v “Different types of publication” on page 14

The “Sample application” on page 15 illustrates how these features can be used in

practice.

Topics

A topic identifies what a publication is about. It consists of a character string.

You can use any characters within the single-byte character set for which the

machine is configured in a topic string. However, a topic string might need to be

translated to a different character representation, so you are recommended to use

only those characters that are available in the configured character set of all

relevant machines. Topic strings are case sensitive, and a blank character has no

special meaning. A null character terminates the string and is not considered to be

part of it.

Subscribers can specify a topic or range of topics, using wildcards, for the

information that they want.

Matching topic strings

The wildcard characters recognized by WebSphere MQ Publish/Subscribe are:

* Zero or more characters

? One character

In the example shown in Figure 1 on page 4, the high-level topic of ’Sport’ might

be divided into separate topics covering different sports, such as:

Sport/Soccer

Sport/Golf

Sport/Tennis

These might be divided further, to separate different types of information about

each sport, such as:

Sport/Soccer/Fixtures

Sport/Soccer/Results

Sport/Soccer/Reports

Note: WebSphere MQ Publish/Subscribe does not recognize that the ‘/’ character

is being used in a special way. However, it is recommended that the ‘/’

character is used as a separator to ensure compatibility with other

WebSphere business integration functions.

The following topic strings could be used in subscriptions to retrieve particular

sets of information:

© Copyright IBM Corp. 1998, 2005 9

* All information on Sport, Stock, Films and TV.

Sport/*

All information on Soccer, Golf and Tennis.

Sport/Soccer/*

All information on Soccer (Fixtures, Results and Reports).

Sport/*/Results

All Results for Soccer, Golf and Tennis.

Note that wildcards do not span streams (see “Streams”).

The percent character ‘%’ is used as an escape character, to allow these characters

to be used in a topic string. For example, the string ‘ABC%*D’ represents the actual

topic ABC*D. If the string ABC%*D is specified in a Publish message (where wildcard

characters are not allowed), the string could be matched by a subscriber specifying

the string ABC?D.

To use a % character in a topic string, specify two percent characters ‘%%’. A

percent character in a string must always be followed by a ‘*’, a ‘?’, or another ‘%’

character.

If wildcard characters are not allowed in a message, a ‘*’ or ‘?’ character can be

present only if it is immediately preceded by a ‘%’ character so that the ‘*’ or ‘?’

character loses its wildcard semantics. Therefore, ABC%*D is a valid topic string in a

Publish message but ABC*D is not.

Streams

Streams provide a way of separating the flow of information for different topics. A

stream is implemented as a set of queues, one at each broker that supports the

stream. Each queue has the same name (the name of the stream). The default

stream set up between all the brokers in a network is called

SYSTEM.BROKER.DEFAULT.STREAM.

Streams can be created by an application or by the administrator. Stream names are

case sensitive, and stream queues must be local queues (not alias queues). Stream

names beginning with the characters ‘SYSTEM.BROKER.’ are reserved for

WebSphere MQ use. For more information see “Broker queues” on page 99.

A broker has a separate thread for each stream that it supports. If multiple streams

are used, the broker can process publications arriving at different stream queues in

parallel. Other advantages of using streams are as follows:

v To provide a high level grouping of topics.

Streams act as high-level qualifiers for topics. For instance, in the example

shown in Figure 1 on page 4, a separate stream might be set up for Sport. In this

case, to get the soccer results you need to subscribe to the Soccer/Results topic

specifying the ‘Sport’ stream. The other topics (Stock, Films, TV) remain on the

default stream, unless other streams are set up for them.

Note that wildcard characters are not used for stream names, and that wildcards

do not span streams. For example, a subscriber to topic ‘*’ on the ‘Sport’ stream

does not receive publications published on other streams.

v To restrict the range of publications and subscriptions that a broker has to deal

with.

Topics

10 WebSphere MQ Publish/Subscribe User’s Guide

A given stream can be restricted to a subtree of a hierarchy or the stream can be

split into separate hierarchies that are not connected (see “Broker networks”).

For example, if broker 1 in Figure 4 does not support a stream supported by its

children, brokers 2 and 3 each form the root of a separate hierarchy for that

stream, and no subscriptions or publications flow between the two hierarchies.

v To provide access control.

A broker has a stream queue for each stream that it supports. Normal

WebSphere MQ access control techniques can be used to control whether a

particular application is authorized to put messages onto this queue (publish to

this stream), or to browse messages from the queue (subscribe to it). Although a

subscribing application does not get messages from the broker’s queue directly,

the broker checks the subscriber’s authorization to subscribe to the broker’s

queue when it registers the subscription. This authorization check takes place at

the broker to which the application publishes or subscribes, not at other brokers

to which the publication or subscription might be propagated.

The administrator can change publishers’ and subscribers’ stream queue

authorizations dynamically (using normal WebSphere MQ queue management

facilities), although the changes might not take effect until the broker is

restarted.

v To define a certain quality of service for broker-to-broker communication of

publications.

You can send information associated with one stream along different channels

from those used for another stream. For example, a non-urgent stream might

have its associated channels active only during the night.

v To allow different queue attributes (such as maximum message length) to be

assigned for publications on different streams.

Broker networks

You can link brokers together to form a network of brokers. A broker network

must be arranged as a hierarchy. The broker at the top of the hierarchy is called

the root broker. The root broker can have one or more child brokers, and is known as

the parent broker to these brokers. The child brokers can also have child brokers,

and so on, as illustrated in Figure 4.

Using a hierarchy reduces the number of channels that need to be defined because

each broker does not need to be connected to every other broker. Both publication

and subscription traffic take a hierarchic route to their destinations.

BROKER 1

BROKER 2

BROKER 6BROKER 5

BROKER 3

BROKER 8BROKER 7

BROKER 4

Figure 4. Simple broker hierarchy. Broker 1 is the root broker and brokers 2 and 3 are its children. Broker 4 is the child

of broker 2 and the parent of brokers 7 and 8.

Streams

Chapter 2. System design 11

Each broker maintains administrative information about its parent broker. When a

broker first starts, it communicates with its parent. In this way, each broker knows

the identities of its immediate children as well as its parent. These are known as

the broker’s neighbors.

Define the hierarchy from the root down and, if it is necessary to delete brokers,

delete them from the bottom up. This usually means that to change the root broker

you have to delete the whole network and start again (in exceptional cases you can

use the clrmqbrk command described on 114).

Passing subscription information between brokers

Subscriptions flow to all nodes in the network that support the stream in question.

This is shown in Figure 5.

A broker consolidates all the subscriptions that are registered with it, whether from

applications directly or from other brokers. In turn, it registers subscriptions for

these topics with its neighbors, unless a subscription already exists. This is shown

in Figure 6 on page 13.

When an application publishes information, the receiving broker forwards it

(possibly through one or more other brokers) to any applications that have valid

subscriptions for it, including applications registered at other brokers supporting

this stream (for global publications). This is shown in Figure 7 on page 13.

Subscriber 1

4 - s
ub

sc
rip

tio
n

3 -
 su

bs
cr

ipt
ion

3 - s
ub

sc
rip

tio
n

2 - subscription

HQ

Europe

London

Asia
1 - subscription

Figure 5. Propagation of subscriptions through a broker network. Subscriber 1 registers a subscription for a particular

topic and stream on the Asia broker (1). The subscription for this topic is forwarded to all other brokers in the network

that support the stream (2,3,4).

Broker networks

12 WebSphere MQ Publish/Subscribe User’s Guide

When a broker sends any publish or subscribe message to another broker, it sets its

own user ID in the message, and uses its own authority to put the message. This

means that the broker must have the authority to put messages onto other brokers’

queues (unless the channel is set up to put incoming messages with the message

channel agent’s authority). This also means that all authorization checks are

performed at the publisher’s or subscriber’s local broker.

Subscriber 1

Subscriber 2

6 - subscriptionsu
bs

cr
ipt

ion

su
bs

cr
ipt

ion

HQ

Europe

London

Asia
subscription

5 - subscription

subscription

Figure 6. Multiple subscriptions. Subscriber 2 registers a subscription, with the same topic and stream as in Figure 5

on page 12, on the HQ broker (5). The subscription for this topic is forwarded to the Asia broker, so that it is aware

that subscriptions exist elsewhere on the network (6). The subscription does not have to be forwarded to the Europe

broker, because a subscription for this topic has already been registered (step 3 in Figure 5 on page 12).

Subscriber 1
7 - publication

Subscriber 2

Publisher

8 - p
ub

lic
ati

on

9 - publication

9 - publication

10 - publication

subscription

su
bs

cr
ipt

ion

subscription

subscription

HQ

Europe

London

Asia

su
bs

cr
ipt

ion

Figure 7. Propagation of publications through a broker network. A publisher sends a publication, on the same topic and

stream as in Figure 6, to the Europe broker (7). A subscription for this topic exists from HQ to Europe, so the

publication is forwarded to the HQ broker (8). However, no subscription exists from London to Europe (only from

Europe to London), so the publication is not forwarded to the London broker. The HQ broker sends the publication

directly to subscriber 2 and to the Asia broker (9), from where it is forwarded to subscriber 1 (10).

Broker networks

Chapter 2. System design 13

For more information about brokers, see Part 3, “Managing the broker,” on page

97.

Different types of publication

The broker can handle publications it receives in different ways, depending on the

type of information contained in the publication.

Local and global publications

A publication that is made available through all the brokers on a network is called

a global publication. If required, access to publications can be restricted to

subscribers that use the same broker as the publisher. This is called a local

publication, and it can be specified when the publisher registers with the broker, or

each time it sends publications to the broker. Local publications are not forwarded

to other brokers.

Subscribers can specify whether they want to receive local publications or global

publications (but not both) when they register with the broker. Subscribers

subscribing to global publications do not receive local publications, even if they are

published at the same broker that their subscription was registered at.

State and event information

Publications can be categorized as follows:

State publications

State publications contain information about the current state of something,

such as the price of stock or the current score in a soccer match. When

something happens (for example, the stock price changes or the soccer

score changes), the previous state information is no longer required

because it is superseded by the new information.

 A subscriber will want to receive the current version of the state

information when it starts up, and be sent new information whenever the

state changes.

Event publications

Event publications contain information about individual events that occur,

such as a trade in some stock or the scoring of a particular goal. Each

event is independent of other events.

 A subscriber will want to receive information about events as they happen.

Retained publications

By default, a broker deletes a publication when it has sent that publication to all

the interested subscribers. This type of processing is suitable for event information,

but is not always suitable for state information. A publisher can specify that it

wants the broker to keep a copy of a publication, which is then called a retained

publication. The copy can be sent to subsequent subscribers who register an interest

in the topic. This means that new subscribers don’t have to wait for information to

be published again before they receive it. For example, a subscriber registering a

subscription to a stock price would receive the current price straightaway, without

waiting for the stock price to change (and hence be re-published).

The broker retains only one publication for each topic, so the old publication is

deleted when a new one arrives. It is recommended that you do not have more

than one publisher sending retained publications on the same topic.

Broker networks

14 WebSphere MQ Publish/Subscribe User’s Guide

Subscribers can specify that they do not want to receive retained publications, and

existing subscribers can ask for duplicate copies of retained publications to be sent

to them.

When deciding whether to use retained publications, you need to consider several

factors.

v Will your publications contain state information or event information?

Event publications do not usually have to be retained. For state information, if

all the subscriptions to a topic are in place before any publications are made on

that topic (and no new ones are expected), there is no need to retain publications

because they will be delivered to all subscribers when they are published.

Another reason why publications might not need to be retained is if they are

very frequent (for example, every second), because a new subscriber (or a

subscriber recovering from a failure) receives the current state almost

immediately after it subscribes.

v How will the subscriber application recover from a failure?

If the publisher does not use retained publications, the subscriber application

might need to store its current state locally. If the publisher does use retained

publications, the subscriber application can use the Request Update message to

refresh its state information after a restart.

Note that the broker will continue to send publications to a registered subscriber

even if that subscriber is not running. This could lead to a buildup of messages

on the subscriber queue, which can be avoided if the subscriber registers with

the ‘Publish on Request Only’ option. The subscriber must then refresh its state

periodically using the Request Update command message. Note that in this case

the subscriber does not receive any non-retained publications.

v What are the performance implications of retaining publications?

The broker needs to write retained publications to disk during the Publish

request, which reduces throughput. If the publications are very large, a

considerable amount of queue space (and hence disk space) is needed to store

the retained publication of each topic. In a multi-broker environment, retained

publications are also stored by all other brokers in the network that have a

matching subscription.

Sample application

The sample application (see Chapter 9, “Sample programs,” on page 91) simulates

a results gathering service that reports the latest score in a sports event such as a

soccer match. It receives information from one or more instances of a soccer match

simulator that scores goals at random for the two teams. This is illustrated in

Figure 8 on page 16.

Different types of publication

Chapter 2. System design 15

The match simulator does not keep track of the score. It merely indicates when a

match starts or finishes, and when a goal is scored. These events are published to

three different topics on the SAMPLE.BROKER.RESULTS.STREAM stream. (The

sample program sets up its own stream to avoid any possible conflict with

customer applications on the default stream).

v When a match starts, the names of the teams are published on the

Sport/Soccer/Event/MatchStarted topic.

v When a goal is scored, the name of the team scoring the goal is published on the

Sport/Soccer/Event/ScoreUpdate topic.

v When a match ends, the names of the teams are published on the

Sport/Soccer/Event/MatchEnded topic.

The publications on these topics are not retained, because they contain event

information and not state information.

The results service subscribes to the topic Sport/Soccer/Event/* to receive

publications from any matches that are in progress. It keeps track of the current

score in each match, and whenever there is a change it publishes the score as a

retained publication on the topic Sport/Soccer/State/LatestScore/Team1 Team2,

where Team1 and Team2 are the names of the teams in the match.

A subscriber wanting to receive all the latest scores could register a wildcard

subscription to topic Sport/Soccer/State/LatestScore/* . If it was interested in

one particular team only, it could register a different wildcard subscription to topic

Sport/Soccer/State/LatestScore/*MyTeam* .

Note that the results service must be started before the match simulators, otherwise

it might miss some events and so cannot ascertain the current state in each match.

This is usually the case with event publications, in which subscriptions are static

and need to be in place before publications arrive.

If the results service stops while matches are still in progress, the results service

can find out the state of play when it restarts. This is done by subscribing to its

own retained publications using the Sport/Soccer/State/LatestScore/* topic,

with the ‘Publish on Request Only’ option. A Request Update command is then

issued to receive any retained publications that contain latest scores. (This is done

using a different CorrelId as explained in “Publisher and subscriber identity” on

page 27.)

Broker

Results
Service

Match Simulator
event

publications

Match Simulator
event

publications

event publications

state publications

subscription

Figure 8. The results service application. The match simulators publish events when a match starts or finishes, or a

goal is scored. The results service subscribes to these events, and publishes the latest scores as state publications.

Sample application

16 WebSphere MQ Publish/Subscribe User’s Guide

These publications enable the results service to reconstruct its state as it was when

it stopped. It can then process all events that occurred while it was stopped by

processing the subscription queue for the Sport/Soccer/Events/* topic. Because

the subscription is still registered (no Deregister Subscriber message has been

sent) it includes any event publications that arrived while the results service was

inactive.

This sample program illustrates the following aspects of a Publish/Subscribe

application:

v The use of streams other than the default stream.

v Event publications (not retained).

v State publications (retained).

v Wildcard matching of topic strings.

v Multiple publishers on the same topics (event publications only).

v The need to subscribe to a topic before it is published on (event publications).

v A subscriber continuing to be sent publications when that subscriber (not its

subscription) is interrupted.

v The use of retained publications to recover state after a subscriber failure.

Further details of the messages sent between the publisher, subscriber and broker,

and the results service sample program, are given in Part 2, “Writing applications,”

on page 19.

Sample application

Chapter 2. System design 17

18 WebSphere MQ Publish/Subscribe User’s Guide

Part 2. Writing applications

Chapter 3. Introduction to writing applications 21

Message flows 22

Simplified message flow 23

Message ordering 26

Ensuring that messages are retrieved in the

correct order 26

Publisher and subscriber identity 27

Subscription name and identity 28

The message descriptor 29

Messages sent to the broker 29

Publications forwarded by the broker 30

Persistence and units of work 31

Limitations 31

Group messages 31

Segmented messages 32

Cluster queues 32

Data conversion of MQRFH structure 32

Using the Application Messaging Interface 32

AMI publish/subscribe functions 32

Publish command 32

Register Subscriber command 32

Deregister Subscriber command 33

Receive a publication 33

Chapter 4. Writing publisher applications . . . 35

Registering with the broker 35

Choosing not to register 36

Options you can specify when registering as a

publisher 36

Queue name 36

Selecting a stream 36

Publisher identity 36

Registration scope 36

Registration expiry 36

Broker restart 37

Changing an application’s registration 37

Publishing information 37

Publication data 37

Including data in the message 37

Referring to data in the message 37

Retained publications 38

Expiry of retained publications 38

Publishing locally and globally 38

Deleting information 38

Deregistering with the broker 39

Chapter 5. Writing subscriber applications . . . 41

Registering as a subscriber 41

Subscriber queues 42

Options you can specify when registering as a

subscriber 42

Queue name 42

Selecting a stream 42

Subscriber identity 42

Subscription scope 43

Subscription expiry 43

Broker restart 43

Changing an application’s registration 43

Requesting information 43

Requesting information from the broker 43

Requesting information from a publisher . . . 44

Deregistering as a subscriber 44

Chapter 6. Format of command messages . . . 47

MQRFH – Rules and formatting header 47

Fields 48

Structure definition in C 50

Publish/Subscribe name/value strings 51

Options using string constants 52

Options using integer constants 52

Sending a command message with the RFH

structure 52

Publication data 53

Double-byte character sets 53

Chapter 7. Publish/Subscribe command

messages 57

Delete Publication 58

Required parameters 58

Optional parameters 58

Example 58

Error codes 58

Deregister Publisher 60

Required parameters 60

Optional parameters 60

Example 61

Error codes 61

Deregister Subscriber 62

Required parameters 62

Optional parameters 62

Example 64

Error codes 64

Publish 65

Required parameters 65

Optional parameters 65

Example 69

Error codes 69

Register Publisher 70

Required parameters 70

Optional parameters 70

Example 71

Error codes 71

Register Subscriber 72

Required parameters 72

Optional parameters 72

Example 78

Error codes 79

Request Update 80

Required parameters 80

Optional parameters 80

Example 81

Error codes 81

© Copyright IBM Corp. 1998, 2005 19

Chapter 8. Error handling and response

messages 83

Error handling by the broker 83

Response messages 84

Message descriptor for response messages . . . 84

Types of error response 85

OK response 85

Warning response 85

Error response 85

Broker responses 86

Standard parameters 86

Optional parameters 86

Examples 88

Error codes applicable to all commands 88

Problem determination 88

Chapter 9. Sample programs 91

Sample application 92

Running the application 93

Possible extensions 95

Application Messaging Interface samples 96

20 WebSphere MQ Publish/Subscribe User’s Guide

Chapter 3. Introduction to writing applications

Applications use command messages to communicate with the broker when they

want to publish or subscribe to information. These messages use the WebSphere

MQ Rules and Formatting Header (RF Header), which is described in Chapter 6,

“Format of command messages,” on page 47. The content of each command

message starts with an MQRFH structure. This structure contains a name/value

string, which defines the type of command the message represents and any

parameters associated with the command. In the case of a Publish command

message, the name/value string is usually followed by the data to be published, in

any format specified by the user. Broker responses to command messages also use

the MQRFH structure.

The normal Message Queue Interface (MQI) calls (such as MQPUT and MQGET)

can be used to put RF Header command messages to the broker queue, and to

retrieve response messages and publications from their respective queues. The MQI

is described in the WebSphere MQ Application Programming Guide. Most command

messages are sent to the broker’s control queue

(SYSTEM.BROKER.CONTROL.QUEUE), but Publish and Delete Publication

command messages are sent to the appropriate stream queue at the broker (for

example, SYSTEM.BROKER.DEFAULT.STREAM).

Alternatively, you can use the WebSphere MQ Application Messaging Interface

(AMI) to send messages to and receive them from the broker. The AMI constructs

and interprets the fields in the RF Header, so you don’t need to understand its

structure. In addition, the application programmer is not concerned with details of

how WebSphere MQ sends the message. These details (for instance, the queue

name and fields in the message descriptor) are contained in AMI services and

policies set up by a system administrator. The AMI is available as a SupportPac™.

This chapter describes the things that you need to know before you start writing a

publisher or subscriber application. It discusses the following topics:

v “Message flows” on page 22

v “Message ordering” on page 26

v “Publisher and subscriber identity” on page 27

v “The message descriptor” on page 29

v “Persistence and units of work” on page 31

v “Limitations” on page 31

v “Using the Application Messaging Interface” on page 32

You can find more information about writing applications in the following

chapters:

v Chapter 4, “Writing publisher applications,” on page 35

v Chapter 5, “Writing subscriber applications,” on page 41

v Chapter 6, “Format of command messages,” on page 47

v Chapter 7, “Publish/Subscribe command messages,” on page 57

v Chapter 8, “Error handling and response messages,” on page 83

v Chapter 15, “Finding out about other publishers and subscribers,” on page 151

Sample programs to illustrate the techniques used are described in Chapter 9,

“Sample programs,” on page 91.

© Copyright IBM Corp. 1998, 2005 21

Message flows

 Figure 9 shows the basic flow of messages using the Register Publisher,

Deregister Publisher, Register Subscriber, Deregister Subscriber and Publish

command message and responses. This flow applies to all event publications, and

to state information where the subscriber wants to get the latest published state of

a topic.

The responses are optional, and the Register Publisher and Deregister Publisher

command messages can be omitted (publishers can choose not to register, or to

register on their first publish command). So the flow diagram can be simplified as

shown in Figure 10 on page 23.

Publisher Broker Subscriber

Register Publisher

Register Publisher (response)

Register Subscriber

Register Subscriber (response)

Publish

Publish (response)

Publish

Publish

Publish (response)

Publish

Deregister Subscriber

Deregister Subscriber (response)

Deregister Publisher

Deregister Publisher (response)

... ...

Figure 9. Basic flow of messages

Message flows

22 WebSphere MQ Publish/Subscribe User’s Guide

Simplified message flow

 Figure 10 is a simplified version of Figure 9 on page 22 with the optional messages

and responses omitted.

Figure 11 on page 24 shows how publish and subscribe messages flow between the

publisher, the subscriber, and the broker queues. In Figure 12 on page 24 this is

extended to a two-broker system.

The flow of messages when retained publications are used is shown in Figure 13

on page 25. In this case, the subscriber receives the current retained publication as

soon as it registers a subscription. In Figure 14 on page 25, the subscriber registers

with the ‘Publish on Request Only’ option, so it doesn’t receive the publication

until it sends a Request Update command message. (Note that the first publication

is not delivered to the subscriber, because it is updated by the second publication

before the update request is received).

Publisher Broker Subscriber

Register Subscriber

Publish

Publish

Publish

Publish

Deregister Subscriber

... ...

Figure 10. Simplified flow of messages

Message flows

Chapter 3. Introduction to writing applications 23

Subscriber
Queue

Subscriber

Broker

Stream
Queue

Control
Queue

Publisher
2 - publication 3 - publication

4 - publication

1 - subscription

Figure 11. Flow of messages in a single-broker system. The subscriber registers a subscription by putting a message

on the broker’s control queue (1). Subsequently, a publisher puts a publication message, for the same topic, on the

corresponding stream queue in the broker (2). The broker forwards the publication by putting the same message on

the subscriber queue (3), from where the subscriber application can get it (4).

Subscriber
Queue

Subscriber

Publisher
3 - publication 5 - publication4 - publication

6 - publication

1 - subscription2 - subscription

Stream
Queue

Control
Queue

Stream
Queue

Control
Queue

Broker 1 Broker 2

Figure 12. Flow of messages in a multi-broker system. The subscriber registers a subscription as in Figure 11(1).

Broker 2 forwards the subscription by putting a message on the control queue of Broker 1 (2). Subsequently, a

publisher puts a publication message, for the same topic, on the corresponding stream queue in Broker 1 (3). The

publication is forwarded to Broker 2 (4), and then to the subscriber queue (5), from where the subscriber application

can get it (6).

Message flows

24 WebSphere MQ Publish/Subscribe User’s Guide

Subscriber
Queue

Subscriber

Broker

Stream
Queue

Control
Queue

Internal
Queue

Publisher
1 - publication

5 - publication

3 - subscription

2 - publication 4 - publication

Figure 13. Flow of messages using retained publications. A publisher sends a retained publication by putting a

message on the appropriate stream queue in the broker (1). The broker stores the publication on an internal queue

(2). Subsequently, a subscriber registers a subscription, to the same topic and stream, by putting a message on the

broker’s control queue (3). The broker sends the current retained publication for this topic by putting a message on the

subscriber queue (4), from where the subscriber application can get it (5).

Subscriber
Queue

Subscriber

Broker

Control
Queue

Internal
Queue

Publisher

1 - publication 2 - publication 7 - publication

8 - publication

3 - subscription

4 - publication 5 - publication

6 - request update

Stream
Queue
Stream
Queue

Figure 14. Flow of messages using publish on request only. A publisher sends a retained publication to a stream

queue in the broker (1). The broker stores it on an internal queue (2). A subscriber registers a subscription, to the

same topic and stream, by putting a message on the broker’s control queue (3), but it uses the ‘Publish on Request

Only’ option so the broker takes no action. Subsequently, the publisher sends a second retained publication to the

broker (4), which replaces the first one on the internal queue (5). The subscriber then sends a request update

message to the broker’s control queue (6). This causes the broker to send the current retained publication to the

subscriber queue (7), from where the subscriber application can get it (8).

Message flows

Chapter 3. Introduction to writing applications 25

Message ordering

For a given stream, messages are published by brokers in the same order as they

are received from publishers (subject to reordering based on message priority).

This normally means that each subscriber receives messages from a particular

broker, on a particular topic and stream, from a particular publisher in the order

that they are published by that publisher.

However, as with all WebSphere MQ messages, it is possible for messages,

occasionally, to be delivered out of order. This can happen in the following

situations:

v If a link in the network goes down and subsequent messages are rerouted along

another link

v If a queue becomes temporarily full, or put-inhibited, so that a message is put to

a dead-letter queue and therefore delayed, while subsequent messages pass

straight through.

v If the administrator deletes a broker or uses the clrmqbrk command

(CLRMQMBRK on iSeries) when publishers and subscribers are still operating,

causing queued messages to be put to the dead-letter queue and subscriptions to

be interrupted.

If these circumstances cannot occur, publications are always delivered in order.

Ensuring that messages are retrieved in the correct order

If you need to ensure that your messages are delivered in the correct order in all

circumstances, you can use one of the following strategies:

v A SequenceNumber parameter is supported on the Publish message. A publisher

can include this with each message, increasing the value by one for each

successive message that it publishes for the same stream and topic. The broker

does not check or set this parameter; the responsibility for it lies with the

publisher. The number can be checked by the subscriber, which needs to

remember the last sequence number it received for each stream and topic

combination.

If a subscriber receives a publication message that is out of order, it can react in

various ways:

– If it needs only the latest information (for example, a stock price) and the

sequence number is greater than it should be (that is, one or more previous

publications have not yet been received), this publication message is accepted.

If the sequence number is less than it should be (that is, this is a previous

publication), the publication message is ignored.

– If it needs to keep track of all information, it must record this information

and its sequence number.
v A PublishTimestamp parameter, in Universal time, is provided on the Publish

message. A publisher can include this with each message (with or without the

SequenceNumber parameter). This is particularly useful if subscribers are

interested only in the latest information; they can check whether the timestamp

is greater than that of the last Publish message that they processed.

In both of the above solutions, the publisher and subscriber need to remember

information about the last message they processed for a particular stream and

topic. In the first solution this is the SequenceNumber for the Publish message, and

in the second solution it is the PublishTimestamp. This information might need to

be remembered atomically with issuing or receiving a publication. This can be

Message ordering

26 WebSphere MQ Publish/Subscribe User’s Guide

accomplished by saving the information on a queue, using the same unit-of-work

as the one in which the publication is put or retrieved.

Publisher and subscriber identity

A publisher’s or subscriber’s identity consists of the following:

v Their queue name.

v Their queue manager name (this can be blank to indicate the local queue

manager).

v Correlation identifier (this is optional).

Alternatively, the subscriber’s identity can consist of a subscription name. See

“Subscription name and identity” on page 28.

The correlation identifier can be used to distinguish between different publishers

or subscribers using the same queue. If different subscribers are using the same

queue, all publications sent by the broker to a subscriber specify the correlation

identifier in the CorrelId field of the message descriptor (MQMD).

Note: For responses, MQRO_xx_CORREL_ID report options determine the

correlation identifier used. Applications using a correlation identifier for

identification typically specify the CorrelId and the

MQRO_PASS_CORREL_ID option.

The recipient can then use MQGET with the CorrelId to retrieve the

messages.

This allows several applications to share a queue (this might be desirable if there

are many clients). It also allows one application to distinguish between

publications arising from different subscriptions. An example of this is in the

sample program described on page 15. When the results service restarts, it

subscribes to the topic Sport/Soccer/State/LatestScore/*, with the ‘Publish on

Request Only’ option. It uses a different CorrelId from that used to subscribe to

the Sport/Soccer/Event/* publications. This allows it to retrieve from the same

queue all the retained ‘LatestScore’ publications before it starts processing the

event publications again.

An identity that includes the correlation identifier in the message descriptor is

established by including MQPS_CORREL_ID_AS_IDENTITY in the

RegistrationOptions parameter of the Register Publisher or Register Subscriber

message (or of the Publish message for implicit registration). The correlation

identifier to be used as part of the identity must not be zero.

If MQPS_CORREL_ID_AS_IDENTITY is not set, the identity does not include the

correlation identifier and the broker uses a correlation identifier of its own

choosing when sending messages to that publisher or subscriber. When a broker

selects the correlation identifier itself, this does not conflict with other message

identifiers or correlation identifiers generated by queue managers.

A single publisher or subscriber queue can therefore support multiple identities,

each with a specific correlation identifier value, plus one further identity for which

the correlation identifier is not specified (MQPS_CORREL_ID_AS_IDENTITY was

not set for registration). Each identity is treated by the broker as being independent

Message ordering

Chapter 3. Introduction to writing applications 27

of the others. (Usually, however, a queue has either a number of identities each

with its own specific correlation identifier, or only one identity with no specific

correlation identifier).

MQPS_CORREL_ID_AS_IDENTITY should be set by a publisher whose identity

includes a correlation identifier when sending a Publish message to the broker, so

that the broker can identify the publisher using the CorrelId field in the MQMD. If

such a message is received by the broker when there is no registration in effect for

the publisher’s queue and the correlation identifier specified, an implicit

registration is performed (unless MQPS_NO_REGISTRATION is specified).

When a Publish message is sent by a broker to a subscriber whose identity

includes a correlation identifier, the CorrelId field in the MQMD is set to the

required correlation identifier. The correlation identifier sent to the subscriber

depends only upon what the subscriber set when it registered. The correlation

identifier used by the publisher is independent of the correlation identifier sent to

the subscriber.

MQPS_CORREL_ID_AS_IDENTITY is valid for the Deregister Publisher and

Deregister Subscriber message, to delete a registration for an identity that includes

a correlation identifier.

The value used for a correlation identifier that is part of a publisher’s or

subscriber’s identity needs to be unique only between the other users of the same

queue. The MQPMO_NEW_CORREL_ID option can be used to cause the queue

manager to generate a unique value.

Subscription name and identity

Publish/Subscribe broker subscribers can be identified by their queue name, queue

manager name, and optional correlation identifier. This, in conjunction with a

topic, identifies an individual subscription, referred to here as the traditional identity

of the subscription. An additional attribute to subscriptions, known as the

subscription name, can be used instead of the traditional identity to reference a

subscription.

The subscription name must be unique within the stream for which the

subscription applies. On first registration, the traditional identity must be specified.

The subscription name can be specified on the first registration or added to the

subscription subsequently (at which time the traditional identity must also be

specified to tie the two together). When the subscription name has been defined

for the subscription, subsequent commands need specify only the subscription

name to access (modify or deregister) the subscription. The underlying traditional

identity for the subscription can now be changed by specifying the same

subscription name with new traditional identity information on a Register

Subscriber command.

A subscription name can be associated only with a single traditional identity at any

one time within any stream of a broker (and in particular, with a single topic at a

time), although it is possible to reuse a subscription name for a different

subscription after the original has been deregistered, and it is possible to use the

same subscription name in different streams on the same broker or on any stream

of a different broker for different subscriptions. Subscription names are arbitrary

character strings with no length limit. Subscription names that start with ″MQ″ are

reserved for internal use.

Publisher and subscriber identity

28 WebSphere MQ Publish/Subscribe User’s Guide

If multiple applications require access to the same subscription, the broker can

manage their access by using subscriber identities. A subscribing application can

specify a subscriber identity (an application-generated unique string) on a Register

Subscriber or Deregister Subscriber command to add or remove itself from the

broker-managed list of interested applications. The concepts of shared and

exclusive access to a subscription are supported by the broker in much the same

way as shared and exclusive access to WebSphere MQ objects is supported by a

queue manager. The use of subscription identities on a subscription does not effect

the publication of matching publications to that subscription; a single copy of each

publication is still sent to the defined subscription queue no matter how many

subscriber identities are currently registered. Deregistering with a subscription

identity from a subscription does not delete the subscription unless the

subscription identity list becomes empty as a result of removing the identity from

that list. Identity names that start with ″MQ″ are reserved for internal use.

The message descriptor

This section gives information about the values you must set in the message

descriptor (MQMD) for messages that you send to the broker. It also explains the

values that the broker sets in the message descriptor for publication messages it

forwards to subscribers.

Messages sent to the broker

This section shows the values set for fields in the MQMD for messages sent to the

broker.

Report

See MsgType (below), and “Error handling by the broker” on page 83.

MsgType

Can be set to MQMT_REQUEST for a command message if a response is

always required. The MQRO_PAN and MQRO_NAN flags in the Report field

are not significant in this case.

 Can be set to MQMT_DATAGRAM, in which case responses depend on the

setting of the MQRO_PAN and MQRO_NAN flags in the Report field:

v MQRO_PAN alone means that the broker is to send a response only if the

command succeeds.

v MQRO_NAN alone means that the broker is to send a response only if the

command fails.

v If a command succeeds partially, a response is sent if either MQRO_PAN or

MQRO_NAN is set.

v MQRO_PAN + MQRO_NAN means that the broker is to send a response

whether the command succeeds or fails. This has the same effect from the

broker’s perspective as setting MsgType to MQMT_REQUEST.

v If neither MQRO_PAN nor MQRO_NAN is set, no response is ever sent.

Format

Set to MQFMT_RF_HEADER.

MsgId

Normally set to MQMI_NONE, so that the queue manager generates a unique

value.

CorrelId

Specifies the CorrelId that can optionally be included as part of the

Publisher and subscriber identity

Chapter 3. Introduction to writing applications 29

subscriber’s identity. When used with the MQRO_PASS_CORREL_ID option in

the Report field, it is also in all response messages sent by the broker to the

sender.

ReplyToQ

This is the queue to which responses, if any, are to be sent. This can be the

sender’s publisher or subscriber queue that has the advantage that the QName

parameter can be omitted from the message text. If, however, responses are to

be sent to a different queue, the QName parameter is needed.

ReplyToQMgr

Queue manager for responses.

 Note that a putting application can leave this field blank (the default value), in

which case the local queue manager puts its own name in this field.

Expiry

Expiry of the subscription or publication.

Publications forwarded by the broker

This section shows the values set for fields in the MQMD for publications sent by

the broker to subscribers.

The fields are set to default values, except the following:

Report

Set to MQRO_NONE.

MsgType

Set to MQMT_DATAGRAM.

Expiry

Set to the value in the Publish message received from the publisher. In the

case of a retained message, the time outstanding is reduced by the

approximate time the message has been at the broker.

Format

Set to MQFMT_RF_HEADER.

MsgId

Set to MQMI_NONE, so that the queue manager generates a unique value.

CorrelId

If CorrelId is part of the subscriber’s identity, this is the value specified by the

subscriber when registering. Otherwise, it is a non-zero value chosen by the

broker.

Priority

Set by the publisher or as a resolved value if the publisher specified

MQPRI_PRIORITY_AS_Q_DEF.

Persistence

Set by the publisher or as a resolved value if the publisher specified

MQPER_PERSISTENCE_AS_Q_DEF.

ReplyToQ

Set to blanks.

ReplyToQMgr

Broker’s queue manager name.

UserIdentifier

Subscriber’s user identifier (as set when the subscriber registered).

The message descriptor

30 WebSphere MQ Publish/Subscribe User’s Guide

AccountingToken

Subscriber’s accounting token (as set when the subscriber registered).

ApplIdentityData

Subscriber’s application identity data (as set when the subscriber registered).

PutApplType

Set to MQAT_BROKER.

PutApplName

Set to the first 28 characters of the broker’s queue manager name.

PutDate

Timestamp when the broker puts the message.

PutTime

Timestamp when the broker puts the message.

ApplOriginData

Set to blanks.

Persistence and units of work

Subscriber and publisher registration messages should normally be sent as

persistent messages (registrations themselves are always persistent, regardless of

the persistence of the messages that caused them). Publication messages can be

either persistent or non-persistent. Brokers maintain the persistence and priority of

publications as set by the publisher.

When reading messages from stream queues, brokers always read persistent

messages within a unit-of-work, so that they are not lost if the broker or system

crashes. Non-persistent messages might or might not be read within a

unit-of-work, depending on the options set in the queue manager configuration

file, qm.ini (or equivalent). This is described in “Broker configuration stanza” on

page 102.

Publication messages are treated so that publication to subscribers is once and once

only for persistent messages. For non-persistent messages, delivery to subscribers

is also once only unless SyncPointIfPersistent was specified in the queue

manager configuration file and the broker or queue manager stops abruptly. In this

case, the message might be lost for one or more subscribers. Regardless of its

persistence, however, a Publish message is never sent more than once to a

subscriber, for a given subscription (unless Request Update is used).

Publishers and subscribers can choose whether or not to use a unit-of-work when

publishing or receiving messages. However, if the SequenceNumber technique

described previously is used for maintaining ordering, both publisher and

subscriber must retain sequencing information atomically with putting or getting a

message if the application is to be re-startable.

Limitations

This section describes some limitations of WebSphere MQ Publish/Subscribe.

Group messages

Group messages are not supported by WebSphere MQ Publish/Subscribe. If a

group message is sent to the broker, it does not cause an error, but the group

message flags in the message descriptor are not forwarded by the broker.

The message descriptor

Chapter 3. Introduction to writing applications 31

Segmented messages

Segmented messages are not supported by WebSphere MQ Publish/Subscribe. If a

segmented message is sent to the broker, it is rejected as not valid.

If you want to distribute a segmented message to subscribers, you can publish a

short notification that the message is available, offering to accept ‘direct requests’

for the full message (see “Publish” on page 65).

Cluster queues

Stream queues must not be cluster queues.

Data conversion of MQRFH structure

You might have a client application (publisher or subscriber) running on a version

of WebSphere MQ that does not support data conversion of the MQRFH structure.

The application can pass publish/subscribe messages to other queue managers

provided that CONVERT(NO) is specified on the sending channel.

Using the Application Messaging Interface

The WebSphere MQ Application Messaging Interface (AMI) provides a simple

interface that application programmers can use without needing to understand all

the options available in the WebSphere MQ Message Queue Interface (MQI). The

options that are needed in a particular installation are defined by a system

administrator, using services and policies.

The AMI has functions to generate the most commonly used publish/subscribe

command messages, and to receive a publication from the broker. It is available for

the C, C++, and Java™ programming languages. The name of the function (or

method) depends on the programming language being used. In the case of C, there

are two sets of functions: the high-level interface and the object interface.

AMI publish/subscribe functions

The AMI publish/subscribe functions are:

v Publish command

v Register Subscriber command

v Deregister Subscriber command

v Receive a publication

Publish command

C high-level

amPublish

C object-level

amPubPublish

C++ AmPublisher->publish

Java AmPublisher.publish

Register Subscriber command

C high-level

amSubscribe

C object-level

amSubSubscribe

Limitations

32 WebSphere MQ Publish/Subscribe User’s Guide

C++ AmSubscriber->subscribe

Java AmSubscriber.subscribe

Deregister Subscriber command

C high-level

amUnsubscribe

C object-level

amSubUnsubscribe

C++ AmSubscriber->unsubscribe

Java AmSubscriber.unsubscribe

Receive a publication

C high-level

amReceivePublication

C object-level

amSubReceive

C++ AmSubscriber->receive

Java AmSubscriber.receive

These functions have parameters that enable you to specify some of the parameters

in the command message, such as the topic. Other parameters in the command

message are specified by the AMI service that you use to send the message (the

service is set up by the system administrator). You can modify these parameters by

changing the appropriate name/value elements before sending the command

message; helper functions are provided for this purpose. Details of these

name/value elements and the options that are available for each command are

given in Chapter 7, “Publish/Subscribe command messages,” on page 57.

There are no AMI functions to generate Delete Publication, Deregister Publisher,

Register Publisher, or Request Update command messages directly. You have to

construct a message containing the appropriate name/value elements using the

helper functions provided, and then send the message to the broker.

Refer to the WebSphere MQ Application Messaging Interface book for details of how

to use the functions mentioned above (including the name/value element helper

functions).

Using the Application Messaging Interface

Chapter 3. Introduction to writing applications 33

34 WebSphere MQ Publish/Subscribe User’s Guide

Chapter 4. Writing publisher applications

Publisher applications communicate with the broker using command messages in

the RF Header format (or the equivalent functions in the Application Messaging

Interface). Publishers can register with the broker before they start publishing

information, they can register implicitly with their first publication, or they can

choose not to register. When they have finished publishing information, they can

deregister with the broker. They can also delete retained publications. This chapter

discusses the following topics:

v “Registering with the broker”

v “Publishing information” on page 37

v “Deleting information” on page 38

v “Deregistering with the broker” on page 39

You can see an example of a publisher application in Chapter 9, “Sample

programs,” on page 91.

The only configuration the administrator has to perform before you can define an

application as a potential publisher is to set up the necessary security authorization

to enable the application to put messages to the required stream queues, and, if

explicit registration is required, to send messages to the broker’s control queue (see

“Broker queues” on page 99).

Registering with the broker

Publisher applications can register their intention to publish with a broker.

There are two ways for a publisher to register with a broker:

v The publisher can send a Register Publisher command message to the broker’s

control queue (SYSTEM.BROKER.CONTROL.QUEUE) to indicate that a

publisher will be, or is capable of, publishing data on one or more specified

topics. This message can also be sent by another application on a publisher’s

behalf. This command is described in “Register Publisher” on page 70.

v The publisher can register with the broker implicitly when it sends its first

Publish command message to a stream queue at the broker (such as

SYSTEM.BROKER.DEFAULT.STREAM or

SAMPLE.BROKER.RESULTS.STREAM). This command is described in “Publish”

on page 65. However, if the broker is not currently aware of the stream

specified, a Register Publisher command message is necessary for the broker to

recognize the stream queue.

A publishing application might not know if a stream is supported by a particular

broker. In this case it is recommended that the publisher issues the Register

Publisher command message and waits for a response that indicates that the

stream is known to the broker, before sending the first Publish command message.

An application can register with the same broker more than once, and can also

register with many different brokers. An application that is already registered as a

subscriber can also register as a publisher. This is the case in the sample

application (see “Sample application” on page 15). The results service registers as a

subscriber to the events published by the match simulators, and as a publisher of the

latest scores.

© Copyright IBM Corp. 1998, 2005 35

Choosing not to register

Publishers do not have to register with a broker. This saves the programming

overhead of performing the registration, and of deregistering when the publisher

has finished. However, other applications cannot find out about unregistered

publishers because they do not appear in metatopics (see “Metatopics” on page 151

for information about these). Unregistered publishers can send Publish command

messages to the broker, specifying that they do not want the broker to perform an

implicit registration, provided that both of the following statements are true:

v The publisher does not need to be listed in the metatopics

v The publisher’s stream is already known to the broker

Options you can specify when registering as a publisher

When a publisher registers with a broker, it must specify the topics that it is going

to publish information about. It can specify the name of more than one topic, but it

cannot use wildcards to specify a range of topics.

Queue name

A publisher is required to specify a queue when it registers and also when it issues

Publish command messages (unless it specifies the MQPS_NO_REGISTRATION

option). This is the queue to which any Request Update command messages sent

directly by a subscriber to this publisher are normally sent. The publisher specifies

the queue to which any responses from the broker are to be sent using the

ReplyToQ and ReplyToQMgr parameters; this queue can also be the publisher’s

queue.

Selecting a stream

You can specify the name of the stream to which the specified topics apply. If you

do not specify this, the SYSTEM.BROKER.DEFAULT.STREAM is assumed.

Publisher identity

The identity of the publisher consists of the name of the queue and queue manager

that it uses, as described in “Publisher and subscriber identity” on page 27. You

can specify these names when you register as a publisher. If you do not specify

these names, the names of the reply-to queue and reply-to queue manager

specified in the message descriptor (MQMD) of the command message are used for

this instead.

You can also specify that you want to use the correlation identifier in the message

descriptor as part of the publisher’s identity.

A publisher can register anonymously. In this case its identity is not divulged by

the broker, except to subscribers to metatopics that have additional authority (see

“Authorized metatopics” on page 153).

Registration scope

If the broker is part of a network, the publisher can specify whether it wants its

publications (a) sent to subscribers who have registered local subscriptions on that

broker only (a local publication), or (b) distributed to other brokers in the network

and sent to all subscribers, including those on that broker, who have registered

global subscriptions (a global publication).

Registration expiry

Publisher registrations do not expire, even if you specify a value for Expiry field of

the message descriptor. The value you set for Expiry might however cause the

command message to expire before it is processed by the broker.

Registering with the broker

36 WebSphere MQ Publish/Subscribe User’s Guide

Broker restart

Publisher registrations and retained publications are maintained across broker

restarts.

Changing an application’s registration

If a publisher has registered, it can use the Register Publisher command message

again to increase the range of topics it wants to publish for, or to change the

options for topics that it has already registered for. This command should be sent

to the broker’s control queue.

Publishing information

When an application wants to publish some information, it sends a Publish

command message to the stream queue at the broker. This command is described

in “Publish” on page 65.

The publisher must specify the topic to which the publication applies. If a

publication matches several subscriptions for which a subscriber is registered, only

one copy of the publication is sent to the subscriber for all matching subscriptions.

The publisher can also specify the name of a stream; however, this is not necessary

if the message is put to the correct stream queue at the broker.

If the publisher is not registered with the broker for those topics, the broker

automatically registers the publisher when it receives this message, unless you tell

it not to (see “Choosing not to register” on page 36).

If an application is registered as both a publisher and a subscriber for a topic, it

can use an option when publishing to say that it does not want to receive a copy

of this publication.

Publication data

Publishers can include the publication data in the message, or they can refer to it.

Including data in the message

Publication data is usually appended to the Publish command message, following

the NameValueString of the MQRFH header, as shown in “Publication data” on

page 53. The characteristics of the data are defined in the Encoding, CodedCharSetId

and Format fields of the MQRFH header. Alternatively, string data can be contained

within the NameValueString.

Referring to data in the message

Publishers can make information available to subscribers directly, without going

through the broker. The publisher needs to advertise the fact that it is publishing

information about a topic, and that it is willing to receive direct requests for this

information from subscribers.

There are two ways that a subscriber can find out about this information:

v From a publication received in a normal way.

The publisher can use a normal publication to advertise the fact that it has more

information about a topic (for example, a large file in several different formats).

The publisher should also specify the topic name to be used (which could be the

same, or different) and where the subscriber can find the information.

v From a subscription to the metatopics.

Registering with the broker

Chapter 4. Writing publisher applications 37

The publisher can register with the broker specifying that it accepts direct

requests for information about a topic. Subscribers that request information

about publishers (metatopics) will discover the names of publishers who publish

on this topic. See “Metatopics” on page 151 for information about metatopics.

Retained publications

When a publication specifies that it is to be retained, any previously retained

publication for this stream and topic combination is replaced, so that the

information is always at the latest level. See “Retained publications” on page 14 for

information about retained publications.

Mixing retained and non-retained publications on the same topic in a stream is not

recommended. If an application does this and publishes a non-retained publication,

any previously retained publication is still retained.

It is not recommended for two or more applications to publish retained

publications to the same topic and stream. If two applications do publish a

retained publication about the same topic on the same stream simultaneously, it is

difficult to determine which publication is retained. If these publishers use two

different brokers, it is possible that different retained publications could be active

at different brokers for the same topic and stream.

Expiry of retained publications

Use the Expiry field of the message descriptor (MQMD) of the publish message to

set an expiry interval for a retained message.

Publishing locally and globally

Publishers can specify that they want a publication to be published locally. If they

do not specify this, the publication is made available globally through all the

brokers in the network. Local publications can be received only by subscribers who

register local subscriptions at the same broker as the publisher. Local retained

publications are retained only at this broker.

Applications can publish and subscribe locally to the same topic and stream at

different brokers. Each broker deals with the publications and subscriptions in

isolation from the other brokers.

Mixing local and global publications and subscriptions to the same topic and

stream is not recommended. A local publication is not delivered to a subscriber

registered globally, even if they are at the same broker.

Deleting information

Publishers can request that the broker delete retained publications for specified

topics. To do this, send the Delete Publication command message to the stream

queue at the broker to tell it to delete its copy of any data for the specified topics.

This command is described in “Delete Publication” on page 58.

The application needs the same authority to delete publications as it needs to

publish messages for the specified stream. You do not have to be a registered

publisher to be able to delete publications.

If you want to delete some of the information that was originally published in a

message that covered more than one topic, the broker deletes the publication only

for the topics you specify, and retains the rest.

Publishing information

38 WebSphere MQ Publish/Subscribe User’s Guide

If different publishers publish data on the same stream and topics, the data that is

deleted might have originated from a different publisher.

You can also specify if you want to delete retained publications published locally

at the broker, or those published globally.

Deregistering with the broker

When a publisher that is registered with a broker no longer wants to publish

information on a topic, it can use the Deregister Publisher command message to

deregister with the broker. This message should be sent to the

SYSTEM.BROKER.CONTROL.QUEUE. This command is described in “Deregister

Publisher” on page 60.

This command can be used if the publisher registered with the broker explicitly

using Register Publisher, or implicitly using Publish. A publisher cannot

deregister if it chose not to register in the first place.

The application must specify one of the following:

v Deregister for all topics for which it was registered.

v Deregister for a subset of the topics for which it is registered if it wants to

continue publishing on other topics. It must specify one or more topics, and it

can use wildcards.

You must specify the stream name for these topics, unless it is the default

(SYSTEM.BROKER.DEFAULT.STREAM).

You must also specify the name of the publisher’s queue and queue manager.

The publisher registration must be deregistered by the same user that registered it

originally, unless the deregistering application is allowed to put the message as the

appropriate user (for example using alternate user authority to open the

SYSTEM.BROKER.CONTROL.QUEUE for that user).

Deleting information

Chapter 4. Writing publisher applications 39

40 WebSphere MQ Publish/Subscribe User’s Guide

Chapter 5. Writing subscriber applications

Subscriber applications communicate with the broker using command messages in

the RF Header format (or the equivalent functions in the Application Messaging

Interface). Subscribers need to register with a broker before they can start receiving

publications. They can also request certain types of publication from the broker or

directly from the publisher.

This chapter discusses the following topics:

v “Registering as a subscriber”

v “Requesting information” on page 43

v “Deregistering as a subscriber” on page 44

You can see an example of a subscriber application in Chapter 9, “Sample

programs,” on page 91.

Registering as a subscriber

Subscriber applications need to register their interest in receiving publications with

a broker. Before you can define an application as a potential subscriber, you must

set up the necessary security authorization to enable the application to do the

following:

v Put a message to the broker’s control queue.

v Browse the required stream queues.

v Put a message to the subscriber queue that will be used to receive publications.

Send the Register Subscriber command message to the

SYSTEM.BROKER.CONTROL.QUEUE to register as a subscriber. This command is

described in “Register Subscriber” on page 72.

Your application should send this message to a broker’s control queue (see “Broker

queues” on page 99). to indicate that it wants to subscribe to the topics specified in

the message. Alternatively, an application can send this message to register on

behalf of another application that wants to subscribe. If an application subscribes

on behalf of another application, the user ID of the subscribing application is used.

The application needs alternate user authority if a different user ID is used. An

application that has already registered as a publisher can also register as a

subscriber.

An application can register with the same broker more than once, and can also

register with many different brokers.

When a subscriber has registered with a broker, the subscription is persistent and

survives broker and queue manager restarts, regardless of the persistence of the

Register Subscriber command message.

When a subscriber registers with the broker, it must specify the topics that it is

interested in. It can specify the name of more than one topic, and it can also use

wildcards to specify a range of topics (described in “Topics” on page 9). If a

subscriber has many (different) registrations that match the topic of a publication,

only one copy of the publication is sent to it.

© Copyright IBM Corp. 1998, 2005 41

Subscriber queues

A subscriber queue is the queue where publications for that subscriber are sent.

The subscriber specifies the name of the queue when it registers a subscription. If

the subscriber is at the same queue manager as the broker, the subscriber’s queue

name must not be the same as that of the stream. Such a subscription is rejected.

Even if the subscriber’s and broker’s queue managers are different, it is strongly

recommended that you use different names for the queues.

If a subscribing application registers multiple subscriptions (for the same or

different streams), it can choose whether all Publish command messages are sent

to the same queue, or whether Publish command messages for different

subscriptions go to different queues.

The queue name, queue manager name and correlation identifier (if one is

specified) of a subscriber’s queue or a subscription name are used by the broker to

identify the subscriber (as described in “Publisher and subscriber identity” on page

27). When the broker publishes information about subscribers, if a subscriber has

registered several subscriptions for the same stream that are all to be sent to the

same queue, and the subscriptions are not distinguished with different correlation

identifiers, the subscriber appears as a single application.

If publications for different subscriptions are sent to different queues, or use a

different CorrelId, the broker regards these as being from multiple subscribers

(even though the subscriber might be a single application).

Options you can specify when registering as a subscriber

The options that a subscriber specifies when registering determine which

publications (if any) are sent to it by the broker. Any previously retained

publications for the topics specified are sent immediately after registration (unless

the subscriber specifies new publications only, which are those published after the

subscriber registered with the broker).

Alternatively, the subscriber can request that it is not sent any publications about a

topic unless it asks for them using the Request Update command message. This

method is applicable where publications have been retained, and an application

might want to know the latest information about a topic.

Queue name

The queue where messages for a subscriber should be sent is called the subscriber

queue. This queue must not be a temporary dynamic queue. The subscriber

specifies the name of the queue when it registers a subscription.

Selecting a stream

You can specify the name of the stream to which the specified topics apply. If you

do not specify this, the SYSTEM.BROKER.DEFAULT.STREAM is used.

You can also request that publication messages that are sent to the subscriber

include the name of the stream to which the publication applies, even if the

publisher did not include the name in the publication.

Subscriber identity

The identity of the subscriber consists of a subscription name or the name of the

queue and queue manager that it uses, as described in “Publisher and subscriber

identity” on page 27. You can specify these names when you register as a

subscriber. If you do not specify these names, the following, specified in the

Registering as a subscriber

42 WebSphere MQ Publish/Subscribe User’s Guide

message descriptor (MQMD) of the command message, are used instead: the

names of the reply-to queue and reply-to queue manager, and, optionally, the

correlation identifier.

You can also use the correlation identifier in the message descriptor as part of the

subscriber’s identity. You might need to do this if, for example, the broker

publishes information about subscribers, and a subscriber has registered several

subscriptions for the same stream that are all to be sent to the same queue. If the

subscriptions are not distinguished with different correlation identifiers, the

subscriber appears as a single application.

If the different subscriptions are to be sent to different queues, the broker believes

that these are from multiple subscribers even though the subscriber might be a

single application.

If required, you can tell the broker that the identity of the subscriber should not be

divulged by the broker when the broker publishes information about subscribers

(unless the request comes from a subscriber with additional authority).

Subscription scope

If the broker is part of a network, the subscriber can specify whether it wants to

subscribe to local publications sent to the local broker only, or whether it wants its

subscription distributed to other brokers in the network.

Subscription expiry

The values you set for the Expiry attribute in the message descriptor (MQMD) of

the Register Subscriber command message determines when the subscription

expires. This is measured from the time the subscription request is put. This means

that the message could expire before the subscriber is registered with the broker. If

this is set to MQEI_UNLIMITED, the subscription does not expire, and the

subscriber continues to receive publications until it explicitly deregisters.

Broker restart

Subscriber registrations are maintained across broker restarts. Any subsequent

publications for the specified topics are forwarded to the subscriber, including any

that arrived while the broker was inactive.

Changing an application’s registration

When a subscriber has registered, it can use the Register Subscriber command

message again to increase the range of topics that it wants to receive information

for, or to change the options for topics that it has already registered for.

When a subscription is reregistered, the values you set for the Expiry attribute in

the message descriptor (MQMD) of the Register Subscriber command message

determines when the subscription expires. This is measured from the time the

subscription request is put. Thus the Register Subscriber command message can

be used to refresh a subscription before it expires.

Requesting information

A subscriber can request information from the broker, or directly from a publisher.

Requesting information from the broker

A subscriber can request a retained publication on a specified topic from the

broker. To do this, it uses the Request Update command message, which is

Registering as a subscriber

Chapter 5. Writing subscriber applications 43

described in “Request Update” on page 80. Applications usually do this if, when

they registered with the broker, they asked to be sent publications on request only.

If the broker has a retained publication for the topic specified, it is sent to the

subscriber.

This command message can also be sent by a subscriber that did not register in

this way, to request that the latest copy of a publication be sent to it. This might be

necessary if a subscriber has already seen a publication, but has failed without

saving it, and on restart wants to see it again.

This command message can be satisfied only by a retained publication at the

broker (see “State and event information” on page 14). If the broker to which this

message is sent has no retained publication for the topic specified, the request fails.

Requesting information from a publisher

Under some circumstances, subscribers can request information directly from a

publisher without involving the broker.

A publisher can specify that it is willing to receive direct requests for information

from other applications. In this case, the publisher must make its queue and queue

manager names (and possibly correlation identifier) known to subscribers by

including them in a publication that advertises the availability of other

publications on direct request.

Alternatively, subscribers can subscribe to information about publishers (called

metatopics). They can discover the names of publishers who are willing to accept

direct requests for publications on this topic. (See “Metatopics” on page 151 for

information about metatopics.)

The subscriber can use this information to send a normal WebSphere MQ message

(using the MQI) directly to the publisher. The publisher can then use the MQI to

send the publication directly to the subscriber.

Deregistering as a subscriber

When a subscriber no longer wants to receive publications on a topic, send the

Deregister Subscriber command message to the broker’s control queue. This

command is described in “Deregister Subscriber” on page 62.

This tells the broker to stop sending publications, about the topics specified, to the

subscriber.

An application must specify one of the following:

v Deregister for all topics for which it was registered.

v Deregister for a subset of the topics for which it is registered if it still wants to

receive publications on other topics. It must specify one or more topics. If the

original subscription used wildcards, it must be deregistered using the same

wildcard topic.

You must specify the stream name for these topics, unless it was the default

(SYSTEM.BROKER.DEFAULT.STREAM).

You must also specify the name of the subscriber’s queue and queue manager,

unless they are the same as the reply-to queue and reply-to queue manager in the

message descriptor of the command message. The subscription must be

Requesting information

44 WebSphere MQ Publish/Subscribe User’s Guide

deregistered by the same user that registered it originally, unless the deregistering

application is allowed to put the Deregister Subscriber message as the appropriate

user (for example, using alternate user authority to open the

SYSTEM.BROKER.CONTROL.QUEUE for that user and CorrelId).

Deregistering as a subscriber

Chapter 5. Writing subscriber applications 45

46 WebSphere MQ Publish/Subscribe User’s Guide

Chapter 6. Format of command messages

Applications use command messages to communicate with the broker when they

want to publish or subscribe to information. These messages use the WebSphere

MQ Rules and Formatting Header (RF Header). Each message or response starts

with an MQRFH structure, which includes a NameValueString. This consists of a

succession of tag names and values (name/value pairs), which define the type of

command the message represents and any options that apply to it. In the case of a

Publish command message, the MQRFH header is usually followed by the data

being published, in a format defined in the MQRFH structure. Alternatively, string

publication data can be included within the NameValueString, using appropriate

tag names and values defined by the publisher.

This chapter discusses the following topics:

v “MQRFH – Rules and formatting header”

v “Publish/Subscribe name/value strings” on page 51

v “Publication data” on page 53

The name/value pairs that define the parameters needed for the command

messages are detailed in Chapter 7, “Publish/Subscribe command messages,” on

page 57.

If you are using the WebSphere MQ Application Messaging Interface (AMI) to

communicate with the broker, you don’t need to understand all the information in

this chapter. The AMI constructs and interprets the RF Header and its name/value

pairs (see “Using the Application Messaging Interface” on page 32). However, you

might find it useful to read this chapter, in particular the section on publication

data.

MQRFH – Rules and formatting header

The following table summarizes the fields in the structure.

 Table 2. Fields in MQRFH

Field Description Page

StrucId Structure identifier 48

Version Structure version number 48

StrucLength Total length of MQRFH including string

containing name/value pairs

48

Encoding Numeric encoding 48

CodedCharSetId Coded character set identifier 49

Format Format name 49

Flags Flags 49

NameValueString String containing name/value pairs 49

The MQRFH structure defines the format of the rules and formatting header. This

header can be used to send string data in the form of name/value pairs.

© Copyright IBM Corp. 1998, 2005 47

The format name of an MQRFH structure is MQFMT_RF_HEADER. The fields in

the MQRFH structure and the name/value pairs are in the character set and

encoding given by the CodedCharSetId and Encoding fields in the header structure

that precedes the MQRFH, or by those fields in the MQMD structure if the

MQRFH is at the start of the application message data.

Character data in the MQRFH (including the NameValueString field) must belong

to a single-byte character set (SBCS). The user data that follows NameValueString

can belong to any supported character set (SBCS or DBCS).

This structure is supported in the following environments: AIX, DOS client,

HP-UX, Linux, OS/2®, z/OS, Solaris, Windows client, Windows, and Windows

2000.

Fields

StrucId (MQCHAR4)

Structure identifier.

 The value must be:

MQRFH_STRUC_ID

Identifier for rules and formatting header structure.

 For the C programming language, the constant

MQRFH_STRUC_ID_ARRAY is also defined; this has the same value as

MQRFH_STRUC_ID, but is an array of characters instead of a string.

 The initial value of this field is MQRFH_STRUC_ID.

Version (MQLONG)

Structure version number.

 The value must be:

MQRFH_VERSION_1

Version-1 rules and formatting header structure.

 The initial value of this field is MQRFH_VERSION_1.

StrucLength (MQLONG)

Total length of MQRFH including string containing name/value pairs.

 This is the length in bytes of the MQRFH structure, including the

NameValueString field at the end of the structure. The length does not include

any user data that follows the NameValueString field.

 To avoid problems with data conversion of the user data in some

environments, make sure that StrucLength is a multiple of four.

 The following constant gives the length of the fixed part of the structure, that

is, the length excluding the NameValueString field:

MQRFH_STRUC_LENGTH_FIXED

Length of fixed part of MQRFH structure.

 The initial value of this field is MQRFH_STRUC_LENGTH_FIXED.

Encoding (MQLONG)

Numeric encoding.

Rules and formatting header

48 WebSphere MQ Publish/Subscribe User’s Guide

This specifies the representation used for numeric values in the user data (if

any) that follows the string containing the name/value pairs. This applies to

binary integer data, packed-decimal integer data, and floating-point data.

 The initial value of this field is MQENC_NATIVE.

CodedCharSetId (MQLONG)

Coded character set identifier.

 This specifies the coded character set identifier of character strings in the user

data (if any) that follows the string containing the name/value pairs.

Note: When a message is put, this field must be set to the nonzero value that

specifies the character set of the user data. If this is not done, it is not

possible to convert the message using the MQGMO_CONVERT option

when the message is retrieved.

The initial value of this field is 0.

Format (MQCHAR8)

Format name.

 This specifies the format name of the user data (if any) that follows the string

containing the name/value pairs.

 Pad the name with blanks to the length of the field. Do not use a null

character to terminate the name before the end of the field, because the queue

manager does not change the null and subsequent characters to blanks in the

MQRFH structure. Do not specify a name with leading or embedded blanks.

 The initial value of this field is MQFMT_NONE.

Flags (MQLONG)

Flags.

 The following can be specified:

MQRFH_NONE

No flags.

 The initial value of this field is MQRFH_NONE.

NameValueString (MQCHARn)

String containing name/value pairs.

 This is a variable-length character string containing name/value pairs in the

form:

name1 value1 name2 value2 name3 value3 ...

Each name or value must be separated from the adjacent name or value by one

or more blank characters; these blanks are not significant. A name or value can

contain significant blanks by prefixing and suffixing the name or value with

the double-quote character; all characters between the open double-quote and

the matching close double-quote are treated as significant. In the following

example, the name is FAMOUS_WORDS, and the value is Hello World:

FAMOUS_WORDS "Hello World"

A name or value can contain any characters other than the null character

(which acts as a delimiter for NameValueString). However, to assist

interoperability, an application might prefer to restrict names to the following

characters:

Rules and formatting header

Chapter 6. Format of command messages 49

v First character: upper case or lower case alphabetic (A through Z, or a

through z), or underscore.

v Second character: upper case or lower case alphabetic, decimal digit (0

through 9), underscore, hyphen, or dot.

If a name or value contains one or more double-quote characters, the name or

value must be enclosed in double quotes, and each double quote within the

string must be doubled, for example:

Famous_Words "The program displayed ""Hello World"""

Names and values are case sensitive, that is, lowercase letters are not

considered to be the same as uppercase letters. For example, FAMOUS_WORDS and

Famous_Words are two different names.

 The length in bytes of NameValueString is equal to StrucLength minus

MQRFH_STRUC_LENGTH_FIXED. To avoid problems with data conversion of

the user data in some environments, make sure that this length is a multiple of

four. NameValueString must be padded with blanks to this length, or

terminated earlier by placing a null character following the last value in the

string. The null and bytes following it, up to the specified length of

NameValueString, are ignored.

Note: Because the contents and length of the NameValueString field are not fixed,

no initial value is given for this field, and it is omitted from the “Structure

definition in C.”

 Table 3. Initial values of fields in MQRFH

Field name Name of constant Value of constant

StrucId MQRFH_STRUC_ID 'RFHb' (See note 1)

Version MQRFH_VERSION_1 1

StrucLength MQRFH_STRUC_LENGTH_FIXED 32

Encoding MQENC_NATIVE See note 2

CodedCharSetId None 0

Format MQFMT_NONE 'bbbbbbbb'

Flags MQRFH_NONE 0

Notes:

1. The symbol ‘b’ represents a single blank character.

2. The value of this constant is environment-specific.

3. In the C programming language, the macro variable MQRFH_DEFAULT contains the

values listed above. It can be used in the following way to provide initial values for the

fields in the structure:

MQRFH MyRFH = {MQRFH_DEFAULT};

Structure definition in C

typedef struct tagMQRFH {

 MQCHAR4 StrucId; /* Structure identifier */

 MQLONG Version; /* Structure version number */

 MQLONG StrucLength; /* Total length of MQRFH including string

 containing name/value pairs */

 MQLONG Encoding; /* Numeric encoding */

Rules and formatting header

50 WebSphere MQ Publish/Subscribe User’s Guide

MQLONG CodedCharSetId; /* Coded character set identifier */

 MQCHAR8 Format; /* Format name */

 MQLONG Flags; /* Flags */

 } MQRFH;

Publish/Subscribe name/value strings

The MQRFH format is used to encode command messages that are sent to the

WebSphere MQ Publish/Subscribe broker. The NameValueString field within the RF

header contains name/value pairs that describe the command to be carried out by

the broker. If the command being issued is a Publish command, publication data

(in a format defined by the publisher) can follow the NameValueString field.

The NameValueString can contain any number of name/value pairs, but only those

in which the tag-name begins with the characters ‘MQPS’ are recognized by the

broker. Other name/value pairs (which can be defined by the publisher to encode

publication data, for instance) are ignored by the broker.

The first occurrence of an ‘MQPS’ tag-name must be MQPSCommand, followed by a

tag-value that identifies the command to be carried out. Subsequent ‘MQPS’

tag-names and their values identify any options for that command (if they occur

before the MQPSCommand tag-name, the command fails).

Each name or value must be separated from the adjacent name or value by one or

more blank characters. The C header file cmqpsc.h defines tag-names and values

that can be used by publisher and subscriber applications when building command

messages to be sent to the broker. Blank enclosed versions of the constants are

provided to simplify construction of a NameValueString. For example, topics are

specified using a tag-name of MQPSTopic, and the following three constants are

provided in the cmqpsc.h header file:

#define MQPS_TOPIC "MQPSTopic"

#define MQPS_TOPIC_B " MQPSTopic "

#define MQPS_TOPIC_A ’ ’,’M’,’Q’,’P’,’S’,’T’,’o’,’p’,’i’,’c’,’ ’

The MQPS_TOPIC constant is not enclosed by blanks. If it is used to build a

NameValueString, the application must add blanks between tag-names and values.

The version of the constant with the ‘_B’ suffix includes the necessary blanks. The

version with the ‘_A’ suffix also includes the blanks, but is in character array form.

These constants are most suited for initialization of a C structure that is being used

to define a fixed layout of a NameValueString.

For example, the Delete Publication command can be issued to delete retained

publications throughout the broker network. A topic of ’*’ matches all topics

within the stream that the command is sent to, so using this deletes all retained

publications. A NameValueString to perform such a command can be constructed as

follows.

If the constants without blanks are used, the blanks must be inserted, for example:

MQCHAR DeleteCmd[] =

 MQPS_COMMAND " " MQPS_DELETE_PUBLICATION " " MQPS_TOPIC " *";

This can be simplified by using the constants with blanks, for example:

MQCHAR DeleteCmd[] =

 MQPS_COMMAND_B MQPS_DELETE_PUBLICATION_B MQPS_TOPIC_B "*";

A subscribing application might need to analyze a NameValueString, for instance to

determine the topic associated with each publication it receives. One approach is to

Rules and formatting header

Chapter 6. Format of command messages 51

break down the entire NameValueString into its constituent parts. An illustration of

this approach is given in the results service sample application (see Chapter 9,

“Sample programs,” on page 91). A simpler approach is to use the sscanf in the

C runtime library to determine the position of the MQPSTopic tag-name in the

string. Since sscanf automatically strips away white space, the MQPS_TOPIC

constant (without the blanks) is needed here.

Options using string constants

Some commands have options associated with them, which are also specified to

the broker by name/value pairs. They are defined in the C header file cmqpsc.h.

Multiple registration options, publication options and delete options are allowed,

so the MQPSRegOpts, MQPSPubOpts and MQPSDelOpts tag-names can be

repeated with different values. The effect is cumulative.

For example, to register an anonymous local publisher on topic ‘News’, the

following NameValueString is needed:

 MQPSCommand RegPub

 MQPSRegOpts Anon

 MQPSRegOpts Local

 MQPSTopic News

Options using integer constants

Alternatively, an application can specify all its options using a single name/value

pair. This might be useful when the presence or absence of an option is conditional

upon program logic. In this case, the combined set of options can be specified as a

single decimal numeric value. The C header file cmqcfc.h provides corresponding

integer constants for all the options. In the previous example, the constants

MQREGO_ANONYMOUS and MQREGO_LOCAL are relevant. The anonymous

option has a decimal value of 2, and the local option has a decimal value of 4, so

the following NameValueString is equivalent:

 MQPSCommand RegPub

 MQPSRegOpts 6

 MQPSTopic News

Sending a command message with the RFH structure

Figure 15 on page 53 shows how the RFH structure (including the

NameValueString) is appended to the Message Descriptor to send a message to a

broker. In this case, the message is to register a subscriber to the topic ″IBM® Stock

Price″. Part of the message descriptor is shown, together with the message data

that consists of the RFH structure. Pad the NameValueString to a multiple of four

bytes.

Details of the name/value pairs for all the command messages are given in

Chapter 7, “Publish/Subscribe command messages,” on page 57.

Name/value strings

52 WebSphere MQ Publish/Subscribe User’s Guide

Publication data

Publication data, or UserData, can be appended to a Publish command message

after the NameValueString. The format of the data is defined in the Encoding,

CodedCharSetId and Format fields of the MQRFH header. Alternatively, publication

data can be included within the NameValueString, by means of user defined

name/value pairs (which must not begin with the characters ‘MQ’), or the system

provided StringData and IntegerData tags. More details are given in “Publish” on

page 65.

Figure 16 on page 54 shows how publication data can be appended to the RFH

structure. Note how the encoding, CCSID and format of the publication data are

defined in the RFH structure. In Figure 17 on page 54 the publication data is

included within the NameValueString, and in Figure 18 on page 55, the format of

the publication data is defined by the user.

Double-byte character sets

Publication data can use a single-byte character set (SBCS) or a double-byte

character set (DBCS) code page. However, if a publishing application publishes

information in SBCS, a subscribing application receiving that information must not

request the data to be converted to DBCS (because the MQRFH header would be

converted as well, and the header must be SBCS).

MsgDescriptor

MsgData

437
MQHRF

SUB1.Q
BROKER1

ReplyToQ
ReplyToQMgr

Encoding
CodedCharSetld
Format

MQENC_NATIVE

StrucID
Version
StrucLength
Encoding
CodedCharSetld
Format " "
Flags

RFH
1
64
MQENC_NATIVE
0

0

MQPSCommand RegSub MQPSTopic
"IBM Stock Price"

64

Figure 15. Message descriptor and RFH structure. The message descriptor indicates that the subscriber has

nominated its subscriber queue to be the same as its reply queue. It also defines the encoding and CCSID of the RFH

structure, which follows as the message data. The encoding and CCSID fields in the RFH structure are not set,

because there is no data following the RFH structure (compare with Figure 16 on page 54). Note that the length of the

RFH structure includes the NameValueString (which contains the name/value pairs defining the Register Subscriber

command). The topic string is quoted because it contains significant blanks.

Publication data

Chapter 6. Format of command messages 53

MsgDescriptor

MsgData

437
MQHRF

Encoding
CodedCharSetld
Format

MQENC_NATIVE

StrucID
Version
StrucLength
Encoding
CodedCharSetld
Format
Flags

RFH
1
112
MQENC_NATIVE
437
MQSTR
0

MQPSCommand Publish MQPSPubOpts
NoReg MQPSTopic "IBM Stock Price"

$112.85
112

Figure 16. Publication data after the RFH structure. In this example, the publication data ($112.85) that is being

published as string data in MQSTR format, is appended to the message after the NameValueString. Note that the RFH

StrucLength includes the NameValueString, but not the publication data. The message descriptor defines the

encoding, CCSID and format of the RFH structure, which in turn defines the encoding, CCSID and format of the

publication data.

MsgDescriptor

MsgData

437
MQHRF

Encoding
CodedCharSetld
Format

MQENC_NATIVE

StrucID
Version
StrucLength
Encoding
CodedCharSetld
Format " "
Flags

RFH
1
128
MQENC_NATIVE
0

0

MQPSCommand Publish MQPSPubOpts
NoReg MQPSTopic "IBM Stock Price"
StockPrice $112.85

128

Figure 17. Publishing data within the NameValueString. Publication data can be included within the NameValueString,

by means of one or more user-defined name/value pairs, as shown in this example. The encoding and CCSID fields in

the RFH structure are not set, because there is no following data. The receiving application must parse the RFH

structure to extract the publication data.

Publication data

54 WebSphere MQ Publish/Subscribe User’s Guide

In the previous examples, it is assumed that the subscribing or publishing

application is running in an explicit code page of 437. However, for reasons of

portability, applications can use the special CCSID value MQCCSI_Q_MGR in the

message descriptor if they are using the same code page as the queue manager

they are communicating with. In addition, the special value MQCCSI_INHERIT

can be set in the CCSID field of the RF header to indicate that the publication data

is in the same CCSID as the character data in the header.

Figure 19 on page 56 shows how the CCSID for the RF header and the publication

data can be inherited from the message descriptor.

MsgData

StrucID
Version
StrucLength
Encoding
CodedCharSetld
Format
Flags

RFH
1
112
MQENC_NATIVE
437
ACCOUNT
0

MQPSCommand Publish MQPSPubOpts
NoReg MQPSTopic
Bank/Event/Account/CreditCheck

00107805 JONES P
MR 000005 57HIGH STREET, LONDON

112

struct { MQLOMG AccountNo;
MQCHAR Customer[32];
MQLONG CreditRating;
MQCHAR Address[24] }

Figure 18. User-defined publication data. In this example, the format of the publication data is set to a user-defined

format, ACCOUNT, which contains character and numeric data. When the broker processes Publish messages, it

converts the RFH header (but not the publication data) to its own CCSID and encoding. The user must write a data

conversion routine if the publication is sent to subscribing applications that use a different CCSID or encoding.

Publication data

Chapter 6. Format of command messages 55

MsgDescriptor

MsgData

MQCCSI_Q_MGR
MQHRF

Encoding
CodedCharSetld
Format

MQENC_NATIVE

StrucID
Version
StrucLength
Encoding
CodedCharSetld
Format
Flags

RFH
1
112
MQENC_NATIVE
MQCCSI INHERIT
MQSTR
0

MQPSCommand Publish MQPSPubOpts
NoReg MQPSTopic Temperature/London

10 Degrees Centigrade
112

Figure 19. Inheriting the CCSID. The message descriptor uses the special value MQCCSI_Q_MGR to indicate that

data within the RFH structure is in the same CCSID as the queue manager. The value of MQCCSI_INHERIT in the

RFH structure indicates that the same CCSID is used for the publication data.

56 WebSphere MQ Publish/Subscribe User’s Guide

Chapter 7. Publish/Subscribe command messages

This chapter describes the name/value pairs that define the parameters needed for

the following command messages:

v “Delete Publication” on page 58

v “Deregister Publisher” on page 60

v “Deregister Subscriber” on page 62

v “Publish” on page 65

v “Register Publisher” on page 70

v “Register Subscriber” on page 72

v “Request Update” on page 80

Chapter 6, “Format of command messages,” on page 47 describes how to send

these command messages using the Rules and Formatting header.

If you are using the WebSphere MQ Application Messaging Interface (AMI) to

communicate with the broker, you don’t need to understand all the information in

this chapter. The AMI constructs and interprets the RF Header and its name/value

pairs (see “Using the Application Messaging Interface” on page 32). However, you

might find it useful to read this chapter to see what options are available in each

command message. Some of the options are directly accessible through parameters

in an AMI function such as amPublish. Others can be accessed using an AMI

name/value element helper function such as amMsgGetElement, or a macro such

as AmMsgGetStreamName.

© Copyright IBM Corp. 1998, 2005 57

Delete Publication

The Delete Publication command message is sent from a publisher (or another

broker) to a broker’s stream queue to tell it to delete its copy of any retained

publications for the specified topics within that stream.

Required parameters

Command

name: "MQPSCommand" (string constant: MQPS_COMMAND)

value: "DeletePub" (string constant: MQPS_DELETE_PUBLICATION)

Command must be the first parameter in the NameValueString.

Topic

name: "MQPSTopic" (string constant: MQPS_TOPIC)

value: The topic for which published information is to be deleted. Wild cards

can be used to delete several topics.

Topic can be repeated for as many topics as required.

Optional parameters

DeleteOptions

name: "MQPSDelOpts" (string constant: MQPS_DELETE_OPTIONS)

value: The following delete options can be specified:
"Local"

(string constant: MQPS_LOCAL, integer constant: MQDELO_LOCAL).

 Retained publications published locally at this broker (that is, with

RetainPub and Local specified) are deleted. Those published globally

(that is, with RetainPub but not Local specified) are not deleted, even if

they were published at this broker.

The default if DeleteOptions is omitted is that global retained publications are

deleted at all brokers in the network, but local retained publications are not

deleted. Mixing local and global publications to the same topic and stream is

not recommended. See “Publish” on page 65 for more information about

retained local publications.

StreamName

name: "MQPSStreamName" (string constant: MQPS_STREAM_NAME)

value: The name of the publication stream for the specified Topic(s).

The default value is the name of the stream queue to which the message is

sent.

Example

Here is an example of a NameValueString for a Delete Publication command

message. This is used by the sample application to delete the retained publication

that contains the latest score in the match between Team1 and Team2.

 MQPSCommand DeletePub

 MQPSStreamName SAMPLE.BROKER.RESULTS.STREAM

 MQPSTopic "Sport/Soccer/State/LatestScore/Team1 Team2"

Error codes

The following reason codes might be returned in the NameValueString of the broker

response message to this command, in addition to those shown on page 88.

Delete Publication

58 WebSphere MQ Publish/Subscribe User’s Guide

Reason Reason text Explanation

3071 MQRCCF_STREAM_ERROR Stream name too long or contains invalid

characters.

3072 MQRCCF_TOPIC_ERROR Topic name has an invalid length or contains

invalid characters.

3075 MQRCCF_INCORRECT_STREAM Stream name does not match stream queue.

3087 MQRCCF_DEL_OPTIONS_ERROR Invalid delete options supplied.

Delete Publication

Chapter 7. Publish/Subscribe command messages 59

Deregister Publisher

The Deregister Publisher command message is sent from a publisher, or another

application on a publisher’s behalf, to a broker’s control queue to indicate that a

publisher is no longer publishing data on the topics contained in the message.

Required parameters

Command

name: "MQPSCommand" (string constant: MQPS_COMMAND)

value: "DeregPub" (string constant: MQPS_DEREGISTER_PUBLISHER)

Command must be the first parameter in the NameValueString.

Optional parameters

QueueManagerName

name: "MQPSQMgrName" (string constant: MQPS_Q_MGR_NAME)

value: The publisher’s queue manager name.

For a message sent by a publisher, if QueueManagerName, is not present, it

defaults to the ReplyToQMgr name in the message descriptor (MQMD). If the

resulting name is blank, it matches a publisher that registered with a blank

queue manager name.

 For a message sent by a broker, QueueManagerName is omitted.

QueueName

name: "MQPSQName" (string constant: MQPS_Q_NAME)

value: The publisher’s queue name.

For a message sent by a publisher, if QueueName is not present, it defaults to the

ReplyToQ name in the message descriptor (MQMD), which must not be blank

in this case.

 For a message sent by a broker, the QueueName parameter is omitted.

RegistrationOptions

name: "MQPSRegOpts" (string constant: MQPS_REGISTRATION_OPTIONS)

value: The following registration options can be specified:

"CorrelAsId"

(string constant: MQPS_CORREL_ID_AS_IDENTITY, integer constant:

MQREGO_CORREL_ID_AS_IDENTITY).

 The CorrelId in the MQMD (which must not be zero) is part of the

publisher’s identity.

"DeregAll"

(string constant: MQPS_DEREGISTER_ALL, integer constant:

MQREGO_DEREGISTER_ALL)

 All topics registered for this publisher are to be deregistered. If this

option is set, the Topic parameter must be omitted.

 The default if RegistrationOptions is omitted is that no options are set. In this

case, the Topic parameter is required.

StreamName

name: "MQPSStreamName" (string constant: MQPS_STREAM_NAME)

value: The name of the publication stream for the specified Topic(s).

The default value is SYSTEM.BROKER.DEFAULT.STREAM.

Deregister Publisher

60 WebSphere MQ Publish/Subscribe User’s Guide

Topic

name: "MQPSTopic" (string constant: MQPS_TOPIC)

value: The topic being deregistered. Wildcards are allowed.

If DeregAll is specified in RegistrationOptions, the Topic parameter must be

omitted. Otherwise, it is required, and can optionally be repeated for as many

topics as needed.

Example

Here is an example of a NameValueString for a Deregister Publisher command

message. This deregisters a publisher for all topics it has registered that match

Stock/*. The publisher’s identity, including the CorrelId, is taken from the

defaults in the MQMD.

 MQPSCommand DeregPub

 MQPSRegOpts CorrelAsId

 MQPSTopic Stock/*

Error codes

The following reason codes might be returned in the NameValueString of the broker

response message to this command, in addition to those shown on page 88.

 Reason Reason text Explanation

3071 MQRCCF_STREAM_ERROR Stream name too long or contains invalid

characters.

3072 MQRCCF_TOPIC_ERROR Topic name has an invalid length or contains

invalid characters.

3073 MQRCCF_NOT_REGISTERED Publisher or subscriber not registered.

3074 MQRCCF_Q_MGR_NAME_ERROR Queue manager name invalid.

3076 MQRCCF_Q_NAME_ERROR Queue name invalid.

3078 MQRCCF_DUPLICATE_IDENTITY Publisher or subscriber identity already assigned

to another user ID.

3080 MQRCCF_CORREL_ID_ERROR Correlation identifier used as part of identity but

is all binary zero.

3082 MQRCCF_UNKNOWN_STREAM Stream not defined to broker and cannot be

created.

3083 MQRCCF_REG_OPTIONS_ERROR Invalid registration options supplied.

Deregister Publisher

Chapter 7. Publish/Subscribe command messages 61

Deregister Subscriber

The Deregister Subscriber command message is sent from a subscriber, another

application on a subscriber’s behalf, or another broker, to a broker’s control queue

to indicate that it no longer wants to subscribe to the topics specified.

Required parameters

Command

name: "MQPSCommand" (string constant: MQPS_COMMAND)

value: "DeregSub" (string constant: MQPS_DEREGISTER_SUBSCRIBER)

Command must be the first parameter in the NameValueString.

Optional parameters

QueueManagerName

name: "MQPSQMgrName" (string constant: MQPS_Q_MGR_NAME)

value: The subscriber’s queue manager name.

If QueueManagerName is not present, it defaults to the ReplyToQMgr name in the

message descriptor (MQMD). If the resulting name is blank, it matches a

subscriber that registered with a blank queue manager name.

QueueName

name: "MQPSQName" (string constant: MQPS_Q_NAME)

value: The subscriber’s queue name.

If QueueName is not present, it defaults to the ReplyToQ name in the message

descriptor (MQMD), which must not be blank in this case.

RegistrationOptions

name: "MQPSRegOpts" (string constant: MQPS_REGISTRATION_OPTIONS)

value: The following registration options can be specified:

"CorrelAsId"

(string constant: MQPS_CORREL_ID_AS_IDENTITY, integer constant:

MQREGO_CORREL_ID_AS_IDENTITY).

 The CorrelId in the MQMD (which must not be zero) is part of the

subscriber’s identity.

"DeregAll"

(string constant: MQPS_DEREGISTER_ALL, integer constant:

MQREGO_DEREGISTER_ALL).

 All topics registered for this subscriber are to be deregistered. If this

option is set, the Topic parameter must be omitted.

"FullResp"

(string constant: MQPS_FULL_RESPONSE, integer constant:

MQREGO_FULL_RESPONSE).

 When FullResp is specified, all the attributes of the subscription are

returned in the response message if the command does not fail. See

details under Register Subscriber. When FullResp is specified,

DeregAll is not permitted in the Deregister Subscriber command or

multiple topics.

"LeaveOnly"

(string constant: MQPS_LEAVE_ONLY, integer constant:

MQREGO_LEAVE_ONLY).

Deregister Subscriber

62 WebSphere MQ Publish/Subscribe User’s Guide

When LeaveOnly is specified with a SubIdentity that is in the identity

set for the subscription, the SubIdentity is removed from the identity

set for the subscription, but the subscription is not removed from the

broker, even if the resulting identity set is empty.

 If the SubIdentity value is not in the identity set the command fails.

 LeaveOnly must be specified with a SubIdentity.

 If neither LeaveOnly nor SubIdentity are specified, the subscription is

removed regardless of the contents of the identity set for the

subscription.

"VariableUserId"

(string constant: MQPS_VARIABLE_USER_ID, integer constant:

MQREGO_VARIABLE_USER_ID).

 If the subscription to be deregistered has VariableUserId set this must

be set when the Deregister Subscriber command is sent to indicate

which subscription is being deregistered. Otherwise, the userid of the

Deregister Subscriber command will be used to identify the

subscription. This is overridden (along with the other subscriber

identifiers) if a subscription name is supplied.

 The default if this tag is omitted is that no options are set. In this case, the

Topic parameter is required.

StreamName

name: "MQPSStreamName" (string constant: MQPS_STREAM_NAME)

value: The name of the publication stream for the specified Topic(s).

The default value is SYSTEM.BROKER.DEFAULT.STREAM.

SubIdentity

name: "MQPSSubIdentity" (string constant:

MQPS_SUBSCRIPTION_IDENTITY)

value: Subscription identity.

See Register Subscriber for more details. If the SubIdentity is in the identity

set for the subscription, it is removed from the set.

 If the identity set becomes empty as a result of this, the subscription is

removed from the broker (unless LeaveOnly is specified).

 If the identity set still contains other identities, the subscription is not removed

from the broker and publication flow is not interrupted.

SubName

name: "MQPSSubName" (string constant: MQPS_SUBSCRIPTION_NAME)

value: Subscription name.

The SubName value takes precedence over all other identifier fields except the

userid unless VariableUserId is set on the subscription itself.

 If VariableUserId is not set, the Deregister Subscriber command succeeds only

if the userid of the command message matches that of the subscription.

 If a subscription exists that matches the traditional identity of this command

but has no SubName, the Deregister Subscriber command fails.

 If an attempt is made to deregister a subscription that has a SubName using a

command message that matches the traditional identity but with no SubName

specified, the command succeeds.

Deregister Subscriber

Chapter 7. Publish/Subscribe command messages 63

Topic

name: "MQPSTopic" (string constant: MQPS_TOPIC)

value: The topic being deregistered. Wild cards are allowed, but a specified

topic string must match exactly the corresponding string that was

originally specified in the Register Subscriber command.

If DeregAll is specified in RegistrationOptions, the Topic parameter must be

omitted. Otherwise, it is required, and can optionally be repeated for as many

topics as needed. Topics specified can be a subset of those for which the

subscriber is registered if it wants to retain subscriptions to the other topics.

Example

Here is an example of a NameValueString for a Deregister Subscriber command

message. In this case the sample application is deregistering its subscription to the

topics that contain the latest score for all matches. The subscriber’s identity,

including the CorrelId, is taken from the defaults in the MQMD.

 MQPSCommand DeregSub

 MQPSRegOpts CorrelAsId

 MQPSStreamName SAMPLE.BROKER.RESULTS.STREAM

 MQPSTopic Sport/Soccer/State/LatestScore/*

Error codes

The following reason codes might be returned in the NameValueString of the broker

response message to this command, in addition to those shown on page 88.

 Reason Reason text Explanation

3071 MQRCCF_STREAM_ERROR Stream name too long or contains invalid

characters.

3072 MQRCCF_TOPIC_ERROR Topic name has an invalid length or contains

invalid characters.

3073 MQRCCF_NOT_REGISTERED Publisher or subscriber not registered.

3074 MQRCCF_Q_MGR_NAME_ERROR Queue manager name invalid.

3076 MQRCCF_Q_NAME_ERROR Queue name invalid.

3078 MQRCCF_DUPLICATE_IDENTITY Publisher or subscriber identity already assigned

to another user ID.

3080 MQRCCF_CORREL_ID_ERROR Correlation identifier used as part of identity but

is all binary zero.

3082 MQRCCF_UNKNOWN_STREAM Stream not defined to broker and cannot be

created.

3083 MQRCCF_REG_OPTIONS_ERROR Invalid registration options supplied.

3153 MQRCCF_SUB_NAME_ERROR Subscription exists but has no SubName.

3154 MQRCCF_SUB_IDENTITY_ERROR SubIdentity is not in the identity set for the

subscription.

Deregister Subscriber

64 WebSphere MQ Publish/Subscribe User’s Guide

Publish

The Publish command message is used to publish information on specific topics. It

is sent from either:

v From a publisher (or another broker) to a broker’s stream queue

v From a broker to a subscriber’s stream queue

Publication data can be appended to the message, after the NameValueString, in a

format defined by the Encoding, CodedCharSetId and Format fields in the MQRFH

header.

Alternatively, publication data can be included within the NameValueString, using

name/value pairs such as the StringData and IntegerData parameters defined

below, or any other name/value pairs defined by the publisher (provided the

tag-name does not begin with the characters ‘MQ’).

Required parameters

Command

name: "MQPSCommand" (string constant: MQPS_COMMAND)

value: "Publish" (string constant: MQPS_PUBLISH)

Command must be the first parameter in the NameValueString.

Topic

name: "MQPSTopic" (string constant: MQPS_TOPIC)

value: The topic that categorizes this publication. No wild cards are allowed.

Topic can be repeated for as many topics as required. For example, an

application might publish information under topic ‘Topic 1’, which is then

enhanced to publish extra information. The new publications might use topics

‘Topic 1’ and ‘Topic 1 enhanced’, so that subscribers to ‘Topic 1 enhanced’

would be sure to get the additional information, while existing subscribers to

‘Topic 1’ could still access the basic information in the same publication.

Optional parameters

IntegerData

name: "MQPSIntData" (string constant: MQPS_INTEGER_DATA)

value: Optional publication data as an integer.

The meaning is as defined by the publisher. IntegerData can be repeated,

interspersed with StringData tags if required, to send publication data in any

manner defined by the publisher.

PublicationOptions

name: "MQPSPubOpts" (string constant: MQPS_PUBLICATION_OPTIONS)

value: The following publication options can be specified:

"CorrelAsId"

(string constant: MQPS_CORREL_ID_AS_IDENTITY, integer constant:

MQPUBO_CORREL_ID_AS_IDENTITY).

 The CorrelId in the MQMD (which must not be zero) is part of the

publisher’s identity (for messages sent by a publisher to a broker). For

messages sent from a broker to a subscriber, this option is not changed

by the broker.

Publish

Chapter 7. Publish/Subscribe command messages 65

"IsRetainedPub"

(string constant: MQPS_IS_RETAINED_PUBLICATION, integer

constant: MQPUBO_IS_RETAINED_PUBLICATION).

 Can be set only by a broker.

 This publication has been retained by the broker. The broker sets this

option to notify a subscriber that this publication was published earlier

and has been retained. A subscriber can receive such a publication

immediately after registering (or later if a publication has been retained

at another broker that is temporarily inaccessible). It can also be

received in response to a Request Update command.

 The broker sets this option only if the subscriber registered with the

InformIfRet option.

"NoReg"

(string constant: MQPS_NO_REGISTRATION, integer constant:

MQPUBO_NO_REGISTRATION).

 Valid only if the recipient is a broker.

 If the publisher is not already registered with the broker as a publisher

for this stream and topic, this option stops the broker from performing

an implicit registration. If the publisher is already registered, the

registration is unchanged, and has no effect on this publication.

"OtherSubsOnly"

(string constant: MQPS_OTHER_SUBSCRIBERS_ONLY, integer

constant: MQPUBO_OTHER_SUBSCRIBERS_ONLY).

 Valid only if the recipient is a broker.

 Allows simpler processing of conference-type applications. It tells the

broker not to send the publication to the publisher even if he has

subscribed. For example, a group of applications can all subscribe to

the same topic (for example, “Conference”). Using this option, each

application can publish information into the conference without

themselves receiving the information.

"RetainPub"

(string constant: MQPS_RETAIN_PUBLICATION, integer constant:

MQPUBO_RETAIN_PUBLICATION).

 Valid only if the recipient is a broker.

 The broker is to retain a copy of the publication. If this option is not

set, the publication is deleted as soon as the broker has sent the

publication to all its current subscribers.

 The default is that no publication options are set.

PublishTimestamp

name: "MQPSPubTime" (string constant: MQPS_PUBLISH_TIMESTAMP)

value: Optional publication timestamp set by the publisher.

This is of length 16 characters in the format:

 YYYYMMDDHHMMSSTH

using Universal Time. However, this is not checked by the broker, which

transmits this information to subscribers if it is present.

QMgrName

Publish

66 WebSphere MQ Publish/Subscribe User’s Guide

name: "MQPSQMgrName" (string constant: MQPS_Q_MGR_NAME)

value: The publisher’s queue manager name.

For a message sent by a publisher, the default is the ReplyToQMgr name in the

message descriptor (MQMD). If the resulting name is blank, it represents a

publisher that can be reached by resolving QName at the broker.

 For a message sent by a broker, QMgrName is present only if it was explicitly

included by the publisher. (Note that it is not removed by the broker if the

publisher has registered with Anon)

QName

name: "MQPSQName" (string constant: MQPS_Q_NAME)

value: The publisher’s queue name.

For a message sent by a publisher, the default is the ReplyToQ name in the

message descriptor (MQMD), which must not be blank in this case (unless

PublicationOptions specifies NoReg and not OtherSubsOnly).

 For a message sent by a broker, QName is present only if it was explicitly

included by the publisher. (Note that it is not removed by the broker if the

publisher has registered with Anon)

RegistrationOptions

name: "MQPSRegOpts" (string constant: MQPS_REGISTRATION_OPTIONS)

value: The registration options listed below can be specified, subject to the

following conditions:

If NoReg is not specified in PublicationOptions:

v If the publisher is already registered, the registration options are changed to

the values specified, if this tag is present. If it is not present, the registration

options are unchanged.

v If the publisher is not already registered, an implicit registration is

performed. The registration options are those specified by the

RegistrationOptions parameter, if it is present. If it is not present, no

options are set.

If NoReg is specified in PublicationOptions, any current registration has no

effect and it is not changed. RegistrationOptions can be specified.

 If Local is specified in RegistrationOptions, the publication is restricted to

local subscribers and any other valid options are not acted on by the broker.

 The following registration options can be set:

"Anon"

(string constant: MQPS_ANONYMOUS, integer constant:

MQREGO_ANONYMOUS).

 Valid only if the recipient is a broker.

 Tells the broker that the identity of the publisher is not to be divulged,

except to subscribers with additional authority.

 This option (or the lack of it) overrides the option setting for any

previous publication on the same topics (or publisher registration).

"CorrelAsId"

(string constant: MQPS_CORREL_ID_AS_IDENTITY, integer constant:

MQREGO_CORREL_ID_AS_IDENTITY).

Publish

Chapter 7. Publish/Subscribe command messages 67

The CorrelId in the MQMD (which must not be zero) is part of the

publisher’s identity. This option is assumed if CorrelAsId is set in the

PublicationOptions.

"DirectReq"

(string constant: MQPS_DIRECT_REQUESTS, integer constant:

MQREGO_DIRECT_REQUESTS).

 Tells the recipient that the publisher is willing to receive direct requests

for publication information from other applications (not just from the

broker).

 The publisher’s queue and queue manager names can be included in a

Publish message sent by a publisher, so that the names are visible to

the subscriber.

 This option (or the lack of it) overrides the option setting for any

previous publication on the same topics (or registration in the case of a

publisher to a broker, or the value returned in the response to a

subscriber registration).

 This option must not be set if Anon is also set.

"Local"

(string constant: MQPS_LOCAL, integer constant: MQREGO_LOCAL).

 Valid only if the recipient is a broker.

 Tells the broker that publications published by this publisher should be

sent only to subscribers that registered at this broker specifying Local.

SequenceNumber

name: "MQPSSeqNum" (string constant: MQPS_SEQUENCE_NUMBER)

value: Optional sequence number set by the publisher.

This should increase by 1 with each publication. However, this is not checked

by the broker, which merely transmits this information to subscribers if it is

present. If publications on the same stream and topic are published to different

interconnected brokers, it is the responsibility of the publisher to ensure that

sequence numbers, if used, are meaningful.

StreamName

name: "MQPSStreamName" (string constant: MQPS_STREAM_NAME)

value: The name of the publication stream for the specified Topic(s).

This defaults to the name of the stream queue to which the message is sent if

sent to a broker, or an unspecified stream name if the message is sent to a

subscriber. A subscriber can request that the broker always include StreamName

in Publish messages by specifying "InclStreamName" when it registers.

StringData

name: "MQPSStringData" (string constant: MQPS_STRING_DATA)

value: Optional publication data as a character string.

The meaning and format are as defined by the publisher. StringData can be

repeated, interspersed with IntegerData tags if required, to send publication

data in any manner defined by the publisher.

Publish

68 WebSphere MQ Publish/Subscribe User’s Guide

Example

Here are some examples of a NameValueString for a Publish command message.

The first example is for an Event Publication sent by the match simulator in the

sample application to indicate that a match has started, with ‘No Registration’

specified for the publisher:

 MQPSCommand Publish

 MQPSPubOpts NoReg

 MQPSStreamName SAMPLE.BROKER.RESULTS.STREAM

 MQPSTopic Sport/Soccer/Event/MatchStarted

The second example is for a State Publication, so ‘Retain Publication’ is specified as

well. In this case the results service is publishing the latest score in the match

between Team1 and Team2.

 MQPSCommand Publish

 MQPSPubOpts RetainPub

 MQPSPubOpts NoReg

 MQPSStreamName SAMPLE.BROKER.RESULTS.STREAM

 MQPSTopic "Sport/Soccer/State/LatestScore/Team1 Team2"

In both examples the publication data (the names of the teams, or the latest score)

follows the NameValueString, as string data in MQSTR format.

Error codes

The following reason codes might be returned in the NameValueString of the broker

response message to this command, in addition to those shown on page 88.

 Reason Reason text Explanation

3071 MQRCCF_STREAM_ERROR Stream name too long or contains invalid

characters.

3072 MQRCCF_TOPIC_ERROR Topic name has an invalid length or contains

invalid characters.

3074 MQRCCF_Q_MGR_NAME_ERROR Queue manager name invalid.

3075 MQRCCF_INCORRECT_STREAM Stream not defined to broker and cannot be

created.

3076 MQRCCF_Q_NAME_ERROR Queue name invalid.

3078 MQRCCF_DUPLICATE_IDENTITY Publisher or subscriber identity already assigned

to another user ID.

3080 MQRCCF_CORREL_ID_ERROR Correlation identifier used as part of identity but

is all binary zero.

3083 MQRCCF_REG_OPTIONS_ERROR Invalid registration options supplied.

3084 MQRCCF_PUB_OPTIONS_ERROR Invalid publication options supplied.

Publish

Chapter 7. Publish/Subscribe command messages 69

Register Publisher

The Register Publisher command message is sent from a publisher (or another

application on a publisher’s behalf) to a broker’s control queue to indicate that a

publisher will be, or is capable of, publishing data on one or more specified topics.

Required parameters

Command

name: "MQPSCommand" (string constant: MQPS_COMMAND)

value: "RegPub" (string constant: MQPS_REGISTER_PUBLISHER)

Command must be the first parameter in the NameValueString.

Topic

Topic

name: "MQPSTopic" (string constant: MQPS_TOPIC)

value: The topic for which the publisher will be providing publications. Wild

cards are not allowed.

Topic can be repeated for as many topics as required.

Optional parameters

QMgrName

name: "MQPSQMgrName" (string constant: MQPS_Q_MGR_NAME)

value: The publisher’s queue manager name.

For a message sent by a publisher, the default is the ReplyToQMgr name in the

message descriptor (MQMD). If the resulting name is blank, it represents a

publisher that can be reached by resolving QName at the broker.

 For a message sent by a broker, QMgrName is present only if DirectReq is set in

the RegistrationOptions tag.

QName

name: "MQPSQName" (string constant: MQPS_Q_NAME)

value: The publisher’s queue name.

For a message sent by a publisher, the default is the ReplyToQ name in the

message descriptor (MQMD), which must not be blank in this case.

 For a message sent by a broker, QName is present only if DirectReq is set in the

RegistrationOptions tag.

RegistrationOptions

name: "MQPSRegOpts" (string constant: MQPS_REGISTRATION_OPTIONS)

value: The following registration options can be specified:

"Anon"

(string constant: MQPS_ANONYMOUS, integer constant:

MQREGO_ANONYMOUS)

 Tells the broker that the identity of the publisher is not to be divulged,

except to subscribers with additional authority.

"CorrelAsId"

(string constant: MQPS_CORREL_ID_AS_IDENTITY, integer constant:

MQREGO_CORREL_ID_AS_IDENTITY)

 The CorrelId in the message descriptor, MQMD, (which must not be

zero) is part of the publisher’s identity.

Register Publisher

70 WebSphere MQ Publish/Subscribe User’s Guide

"DirectReq"

(string constant: MQPS_DIRECT_REQUESTS, integer constant:

MQREGO_DIRECT_REQUEST)

 Tells the recipient that the publisher is willing to receive direct requests

for publication information from other applications (that is, not just

from the broker).

 This option must not be set if Anon is also set.

"Local"

(string constant: MQPS_LOCAL, integer constant: MQREGO_LOCAL)

 Tells the broker that publications published by this publisher should be

sent only to subscribers that registered on this broker specifying Local.

 If the RegistrationOptions parameter is omitted and the publisher is already

registered, its registration options are unchanged. If the publisher is not

already registered, the default is that no registration options are set.

StreamName

name: "MQPSStreamName" (string constant: MQPS_STREAM_NAME)

value: The name of the publication stream for the specified Topic(s).

The default value is SYSTEM.BROKER.DEFAULT.STREAM.

Example

Here is an example of a NameValueString for a Register Publisher command

message. The publisher is registering with the ‘Direct Requests’ option, for the

Stock/IBM topic on the default stream. The queue name and queue manager name

are specified so that subscribers can respond directly to the publisher.

 MQPSCommand RegPub

 MQPSRegOpts DirectReq

 MQPSQMgrName Broker1

 MQPSQName STOCK.IBM.PUBLISHER.QUEUE

 MQPSTopic Stock/IBM

Error codes

The following reason codes might be returned in the NameValueString of the broker

response message to this command, in addition to those shown on page 88.

 Reason Reason text Explanation

3071 MQRCCF_STREAM_ERROR Stream name too long or contains invalid

characters.

3072 MQRCCF_TOPIC_ERROR Topic name has an invalid length or contains

invalid characters.

3074 MQRCCF_Q_MGR_NAME_ERROR Queue manager name invalid.

3076 MQRCCF_Q_NAME_ERROR Queue name invalid.

3078 MQRCCF_DUPLICATE_IDENTITY Publisher or subscriber identity already assigned

to another user ID.

3080 MQRCCF_CORREL_ID_ERROR Correlation identifier used as part of identity but

is all binary zero.

3082 MQRCCF_UNKNOWN_STREAM Stream not defined to broker and cannot be

created.

3083 MQRCCF_REG_OPTIONS_ERROR Invalid registration options supplied.

Register Publisher

Chapter 7. Publish/Subscribe command messages 71

Register Subscriber

The Register Subscriber command message is sent from a subscriber (or another

application on its behalf), or a broker, to a broker’s control queue to indicate that it

wants to subscribe to the topics specified.

Required parameters

Command

name: "MQPSCommand" (string constant: MQPS_COMMAND)

value: "RegSub" (string constant: MQPS_REGISTER_SUBSCRIBER)

Command must be the first parameter in the NameValueString.

Topic

name: "MQPSTopic" (string constant: MQPS_TOPIC)

value: The topic for which the subscriber wants to receive publications. Wild

cards are allowed.

Topic can be repeated for as many topics as required.

Optional parameters

QMgrName

name: "MQPSQMgrName" (string constant: MQPS_Q_MGR_NAME)

value: The subscriber’s queue manager name.

The default is the ReplyToQMgr name in the message descriptor (MQMD). If the

resulting name is blank, it represents a publisher that can be reached by

resolving QName at the broker.

QName

name: "MQPSQName" (string constant: MQPS_Q_NAME)

value: The subscriber’s queue name.

The default is the ReplyToQ name in the message descriptor (MQMD), which

must not be blank in this case.

RegistrationOptions

name: "MQPSRegOpts" (string constant: MQPS_REGISTRATION_OPTIONS)

value: The following registration options can be specified:

"AddName"

(string constant: MQPS_ADD_NAME, integer constant:

MQREGO_ADD_NAME)

 If AddName is specified, the SubName field is mandatory.

 If AddName is specified for an existing subscription that matches the

traditional identity of this Register Subscriber command, but with no

current SubName value, the SubName specified in this command is

added to the subscription.

 If a subscription already exists by this SubName, or if a matching

subscription (as identified by the traditional identity) with a different

SubName exists on this stream, the command fails.

"Anon"

(string constant: MQPS_ANONYMOUS, integer constant:

MQREGO_ANONYMOUS)

 Tells the broker that the identity of the publisher is not to be divulged,

except to subscribers with additional authority.

Register Subscriber

72 WebSphere MQ Publish/Subscribe User’s Guide

"CorrelAsId"

(string constant: MQPS_CORREL_ID_AS_IDENTITY, integer constant:

MQREGO_CORREL_ID_AS_IDENTITY)

 The CorrelId in the message descriptor, MQMD, (which must not be

zero) is part of the subscriber’s identity.

"DupsOK"

(string constant: MQPS_DUPLICATES_OK, integer constant:

MQREGO_DUPLICATES_OK)

 Setting this option results in the occasional delivery of duplicate

publications to the subscriber. The subscriber should be tolerant of

such duplicate publications.

 The advantage this option provides is reduced overhead in the broker

that can enhance performance.

"FullResp"

(string constant: MQPS_FULL_RESPONSE, integer constant:

MQREGO_FULL_RESPONSE)

 If a response message is requested and this option is specified, all

attributes of a subscription are returned in the response message of any

command that does not fail. When using MQRFH messages, the

NameValueString of the response is in the following format. First the

standard response fields (space delimited):

MQPSCompCode <value>

MQPSReason <value>

MQPSReasonText <value>

followed by all subscription fields, if defined, (again space delimited)

as they appear after any registration changes were made as a result of

a Register Subscriber command, or before any changes were made as

a result of a Deregister Subscriber command.

MQPSCommand <value>

MQPSSubName <value> (Might not be present)

MQPSTopic <value>

MQPSQMgrName <value>

MQPSQName <value>

MQPSCorrelId <value> (Might not be present,

 48-byte character representation of hex chars)

MQPSUserId <value>

MQPSRegOpts <value> (Can be repeated)

MQPSSubIdentity <value> (Might not be present, can be repeated)

MQPSSubUserData <value> (Might not be present)

FullResp is valid only when the command message (Register

Subscriber or Deregister Subscriber) refers to only a single

subscription. Therefore, only a single topic is permitted in the

command, otherwise the command fails.

 When PCF structures are used, the above data is returned in an

equivalent PCF structured message.

 If no response is returned (for example, MQMT_DATAGRAM), this

option is ignored.

"InclStreamName"

(string constant: MQPS_INCLUDE_STREAM_NAME, integer constant:

MQREGO_INCLUDE_STREAM_NAME)

Register Subscriber

Chapter 7. Publish/Subscribe command messages 73

Each Publish message that is sent must include the StreamName

parameter. The broker does this by adding the appropriate name/value

pair to the NameValueString of the message. The NameValueString is

extended if necessary.

 If this option is not set, StreamName is included only if it was specified

explicitly by the publisher.

"InformIfRet"

(string constant: MQPS_INFORM_IF_RETAINED, integer constant:

MQREGO_INFORM_IF_RETAINED)

 The broker informs the subscriber if a publication is retained when a

Publish message is sent. It does this by adding the name/value pair

"MQPSPubOpts IsRetainedPub" to the NameValueString of the message

(after the StreamName if that has been added in accordance with the

InclStreamName option).

 Use this option if a subscriber needs to distinguish between new

publications and old publications that were retained by the broker

before the subscription was made. If this option is specified, the broker

always adds the name/value pair to a publication sent in response to a

Request Update command.

"JoinExcl"

(string constant: MQPS_JOIN_EXCLUSIVE, integer constant:

MQREGO_JOIN_EXCLUSIVE)

 Indicates that the specified SubIdentity should be added as the

exclusive member of the identity set for the subscription, and that no

other identities can be added to the set.

 If the subscription is currently exclusively locked, the command fails if

the identity with the exclusive lock is not the one in this command

message; if it is the same identity, the command succeeds, but returns a

warning of MQRCCF_ALREADY_JOINED.

 If the identity has already joined ’shared’ and is the sole entry in the

set, the set is changed to an exclusive lock held by this identity.

Otherwise, if the subscription currently has other identities in the

identity set (with shared access) the command fails.

 If an application attempts to register with a SubIdentity and the userid

differs from that currently registered with the subscription, it fails if

VariableUserId is not set on the original subscription or, if it is set, the

userid of the command message is checked for authority to browse the

stream queue and put to the subscriber’s queue; if it does not have

sufficient authority, the command fails.

 This option is valid only when SubIdentity is specified.

"JoinShared"

(string constant: MQPS_JOIN_SHARED, integer constant:

MQREGO_JOIN_SHARED)

 Indicates that the specified SubIdentity should be added to the identity

set for the subscription.

 If the subscription currently has zero or more members in the identity

set and none match this identity, and it is not exclusively locked (see

"JoinExcl"), the command succeeds and adds this identity to the set.

Register Subscriber

74 WebSphere MQ Publish/Subscribe User’s Guide

If the identity already has a shared entry for this subscription, the

command succeeds but returns a warning of

MQRCCF_ALREADY_JOINED.

 If the subscription is currently locked exclusively,

MQRCCF_SUBSCRIPTION_LOCKED is returned, unless the identity

that has the subscription locked is the same identity as the one in this

command message, in which case the lock is atomically modified to a

shared lock.

 If an application attempts to register with a SubIdentity, and the userid

differs from the one currently registered with the subscription, it fails if

VariableUserId is not set on the original subscription. If it is set, the

userid of the command message is checked for authority to browse the

stream queue and put to the subscriber’s queue; if it does not have

sufficient authority, the command fails.

 This option is valid only when SubIdentity is specified.

"Local"

(string constant: MQPS_LOCAL, integer constant: MQREGO_LOCAL)

 Tells the broker that the subscription is local and should not be

distributed to other brokers in the network. Only publications

published at this node by a publisher specifying Local are sent to this

subscriber.

"Locked"

(string constant: MQPS_LOCKED, integer constant:

MQREGO_LOCKED)

 Can be set only by the broker.

 This subscription is currently locked (someone has exclusive access to

the subscription). This option is automatically set and unset against the

subscription as identities JoinExcl and leave. Anyone inquiring on the

subscription (either by metatopics or the FullResp option) can see this

option set and the current identity set, thus identifying the owner of

the lock.

"NewPubsOnly"

(string constant: MQPS_NEW_PUBLICATIONS_ONLY, integer

constant: MQREGO_NEW_PUBLICATIONS_ONLY)

 Tells the broker that no currently retained publications are to be sent,

only new publications. If a subscriber re-registers and changes this

option so that it is not set, it is possible that a publication that has

already been sent to it is sent to it again.

"NoAlter"

(string constant: MQPS_NO_ALTERATION, integer constant:

MQREGO_NO_ALTERATION)

 When NoAlter is specified, the Register Subscriber command does not

modify an existing matching subscription’s attributes. This option has

no effect when a subscription is created. This is the converse of the

default behavior for a subsequent subscription that matches the

identity of an existing subscription overwriting any modifiable

attributes of the original subscription.

Register Subscriber

Chapter 7. Publish/Subscribe command messages 75

If a SubIdentity is supplied along with a Join option, the identity is

added to the identity set (if possible) irrespective of the NoAlter

option, because this applies to a subscription’s attributes not its current

state.

"NonPers"

(string constant: MQPS_NON_PERSISTENT, integer constant:

MQREGO_NON_PERSISTENT)

 Any publication sent from a broker to a subscriber that specified this

option is sent as a non-persistent message, irrespective of the

persistence of the publication message received by the broker.

 If you set this option, you cannot set "Pers", "PersAsPub", or

"PersAsQueue".

"Pers"

(string constant: MQPS_PERSISTENT, integer constant:

MQREGO_PERSISTENT)

 Any publication sent from a broker to a subscriber that specified this

option is sent as a persistent message, irrespective of the persistence of

the publication message received by the broker.

 If you set this option, you cannot set "NonPers", "PersAsPub", or

"PersAsQueue".

"PersAsPub"

(string constant: MQPS_PERSISTENT_AS_PUBLISH, integer constant:

MQREGO_PERSISTENT_AS_PUBLISH)

 Any publication sent from a broker to a subscriber that specified this

option is sent with the persistence of the original publication. This is

the default option.

 If you set this option, you cannot set "NonPers", "Pers", or

"PersAsQueue".

"PersAsQueue"

(string constant: MQPS_PERSISTENT_AS_Q, integer constant:

MQREGO_PERSISTENT_AS_Q)

 Any publication sent from a broker to a subscriber that specified this

option is sent with the persistence specified on the subscriber queue.

The persistence is derived from the DEFPSIST setting of the subscriber

queue definition local to the broker: for example, the transmission

queue to the subscriber’s queue manager if the subscriber’s queue

manager is remote from the broker’s queue manager.

 If you set this option, you cannot set "NonPers", "Pers", or

"PersAsPub".

"PubOnReqOnly"

(string constant: MQPS_PUBLISH_ON_REQUEST_ONLY, integer

constant: MQREGO_PUBLISH_ON_REQUEST_ONLY)

 Indicates that the subscriber polls only for information with Request

Update. The broker is not to send unsolicited messages to the

subscriber.

 This option is not propagated if the broker sends this subscription to

other brokers in the network. Publications are sent to it in the normal

Register Subscriber

76 WebSphere MQ Publish/Subscribe User’s Guide

way, and these publications must specify RetainPub to be eligible for

return in response to a Request Update message.

"VariableUserId"

(string constant: MQPS_VARIABLE_USER_ID, integer constant:

MQREGO_VARIABLE_USER_ID)

 When VariableUserId is specified, the identity of the subscriber (queue

name, queue manager name, and correlation identifier) is not restricted

to a single userid. This allows any user to modify or deregister the

subscription when they have suitable authority. To add this option to

an existing subscription the command must come from the same userid

as the original subscription itself.

 If a Register Subscriber command message specifying this option

refers to an existing subscription with this option set, and the userid of

this message differs from the original subscription, the command

succeeds only if the userid of the new command message has authority

to browse the stream queue, and put authority to the subscriber queue

of the modified subscription (that is, existing Publish/Subscribe

authority check for a subscriber). On successful completion, future

publications to this subscriber are put to the subscriber’s queue with

the new userid.

 If a Register Subscriber command message without this option set

refers to an existing subscription with this option set, the option is

removed from this subscription, and the userid of the subscription is

now fixed. If at this time a subscriber already exists that has the same

identity (queue name, queue manager name, and correlation identifier),

but with a different userid associated to it, the command fails.

 If the Registration Options parameter is omitted and the subscriber is already

registered, its registration options are unchanged. If the subscriber is not

already registered, the default is that no registration options are set.

StreamName

name: "MQPSStreamName" (string constant: MQPS_STREAM_NAME)

value: The name of the publication stream for the specified Topic(s).

The default value is SYSTEM.BROKER.DEFAULT.STREAM.

SubIdentity

name: "MQPSSubIdentity" (string constant:

MQPS_SUBSCRIPTION_IDENTITY)

value: The subscription identity.

Used to represent an application with an interest in a subscription. The broker

maintains a set of subscriber identities for each subscription; each subscription

can allow its identity set to hold only a single identity, or unlimited identities

(see the "JoinShared" and "JoinExcl" options).

 A Register Subscriber command that specifies the JoinShared or JoinExcl

option adds the SubIdentity to the subscription’s identity set, if it is not

already there. Any alteration of the subscription’s attributes as the result of a

Register Subscriber command where a SubIdentity is specified succeeds only

if it would be the only member of the set of identities for this subscription.

Otherwise the command fails.

 If no SubIdentity is specified the alteration succeeds irrespective of a possible

set of identities.

Register Subscriber

Chapter 7. Publish/Subscribe command messages 77

The maximum length of a SubIdentity is defined by

MQ_SUB_IDENTITY_LENGTH.

SubName

name: "MQPSSubName" (string constant: MQPS_SUBSCRIPTION_NAME)

value: The subscription name.

If SubName is specified, the subscription name is the single field used to

identify a subscription, overriding the traditional identity.

 If a subscription already exists that matches the traditional identity of this

command, but has no SubName, the Register Subscriber command fails unless

the AddName option is specified.

 If an existing named subscription is to be altered by another Register

Subscriber command specifying the same SubName, and the values of Topic,

QMgrName, QName and CorrelId in the new command match a different

existing subscription (with or without a SubName defined), the command fails:

two subscription names cannot refer to a single subscription.

 Altering or deregistering a subscription that has a SubName is also allowed by

a command message that matches the traditional identity but with no

SubName specified.

 When a SubName value is specified, only one topic attribute is permitted.

 If the underlying topic of the subscription is changed, existing retained

publications are sent to the subscriber, whether or not they received them as a

result of a previous topic for this subscription.

SubUserData

name: "MQPSSubUserData" (string constant:

MQPS_SUBSCRIPTION_USER_DATA)

value: The subscription user data.

Variable length text string. The value is stored by the broker with the

subscription but has no influence on publication delivery to the subscriber. The

value can be altered by re-registering to the same subscription with a new

value. This attribute is for the use of the application.

Example

Here is an example of a NameValueString for a Register Subscriber command

message. In the sample application, the results service uses this message to register

a subscription to the topics containing the latest scores in all matches, with the

‘Publish on Request Only’ option set. The subscriber’s identity, including the

CorrelId, is taken from the defaults in the MQMD.

 MQPSCommand RegSub

 MQPSRegOpts PubOnReqOnly

 MQPSRegOpts CorrelAsId

 MQPSStreamName SAMPLE.BROKER.RESULTS.STREAM

 MQPSTopic Sport/Soccer/State/LatestScore/*

Here is the same message using the equivalent decimal registration options:

 MQPSCommand RegSub

 MQPSRegOpts 33

 MQPSStreamName SAMPLE.BROKER.RESULTS.STREAM

 MQPSTopic Sport/Soccer/State/LatestScore/*

Register Subscriber

78 WebSphere MQ Publish/Subscribe User’s Guide

Error codes

The following reason codes might be returned in the NameValueString of the broker

response message to this command, in addition to those shown on page 88.

 Reason Reason text Explanation

3071 MQRCCF_STREAM_ERROR Stream name too long or contains invalid

characters.

3072 MQRCCF_TOPIC_ERROR Topic name has an invalid length or contains

invalid characters.

3074 MQRCCF_Q_MGR_NAME_ERROR Queue manager name invalid.

3076 MQRCCF_Q_NAME_ERROR Queue name invalid.

3078 MQRCCF_DUPLICATE_IDENTITY Publisher or subscriber identity already assigned

to another user ID.

3080 MQRCCF_CORREL_ID_ERROR Correlation identifier used as part of identity but

is all binary zero.

3081 MQRCCF_NOT_AUTHORIZED Publisher or subscriber not registered.

3082 MQRCCF_UNKNOWN_STREAM Stream not defined to broker and cannot be

created.

3083 MQRCCF_REG_OPTIONS_ERROR Invalid registration options supplied.

3152 MQRCCF_DUPLICATE_SUBSCRIPTION A subscription by this SubName exists or a

matching subscription (identified by the traditional

identity) with a different SubName exists on this

stream.

3153 MQRCCF_SUB_NAME_ERROR The SubName is invalid: it is of zero length or

contains invalid escape sequences.

3154 MQRCCF_SUB_IDENTITY_ERROR The SubIdentity is not in the identity set for the

subscription and neither JoinShared nor JoinExcl

was specified.

3155 MQRCCF_SUBSCRIPTION_IN_USE The subscription has other identities in the

identity set, with shared access.

3156 MQRCCF_SUBSCRIPTION_LOCKED The subscription is locked exclusively by another

identity.

3157 MQRCCF_ALREADY_JOINED The identity already has a shared entry for this

subscription.

Register Subscriber

Chapter 7. Publish/Subscribe command messages 79

Request Update

The Request Update command message is sent from a subscriber to a broker to

request an update publication for the topic specified. This is normally used if the

subscriber specified the option "PubOnReqOnly" (publish on request only) when it

registered. If the broker has a retained publication for the topic, this is sent to the

subscriber. If not, the request fails.

Required parameters

Command

name: "MQPSCommand" (string constant: MQPS_COMMAND)

value: "ReqUpdate" (string constant: MQPS_REQUEST_UPDATE)

Command must be the first parameter in the NameValueString.

Topic

name: "MQPSTopic" (string constant: MQPS_TOPIC)

value: The topic the subscriber is requesting. Wild cards are allowed, in which

case the subscriber might receive multiple retained publications.

Only one occurrence of Topic is allowed in this message.

Optional parameters

QMgrName

name: "MQPSQMgrName" (string constant: MQPS_Q_MGR_NAME)

value: The subscriber’s queue manager name.

The default is the ReplyToQMgr name in the message descriptor (MQMD). If the

resulting name is blank, it matches a publisher with a blank queue manager

name (that is, local to the broker).

QName

name: "MQPSQName" (string constant: MQPS_Q_NAME)

value: The subscriber’s queue name.

The default is the ReplyToQ name in the message descriptor (MQMD), which

must not be blank in this case.

RegistrationOptions

name: "MQPSRegOpts" (string constant: MQPS_REGISTRATION_OPTIONS)

value: The following registration options can be specified:

"CorrelAsId"

(string constant: MQPS_CORREL_ID_AS_IDENTITY, integer constant:

MQREGO_CORREL_ID_AS_IDENTITY)

 The CorrelId in the message descriptor (MQMD), which must not be

zero, is part of the subscriber’s identity.

"VariableUserId"

(string constant: MQPS_VARIABLE_USER_ID, integer constant:

MQREGO_VARIABLE_USER_ID)

 If the subscription of the request update command has VariableUserId

set, this must be set when the Request Update is sent to indicate

which subscription is referred to. Otherwise, the userid of the Request

Update command is used to identify the subscription. This is

overridden (along with the other subscriber identifiers) if a

subscription name is supplied.

Request Update

80 WebSphere MQ Publish/Subscribe User’s Guide

If VariableUserId is set and the userid differs from that of the

subscription, the command succeeds only if the userid of the new

command message has authority to browse the stream queue, and put

authority to the subscriber queue of the subscription (that is, existing

Publish/Subscribe authority check for a subscriber), otherwise it fails.

StreamName

name: "MQPSStreamName" (string constant: MQPS_STREAM_NAME)

value: The name of the publication stream for the specified Topic(s).

The default value is SYSTEM.BROKER.DEFAULT.STREAM.

SubName

name: "MQPSSubName" (string constant: MQPS_SUBSCRIPTION_NAME)

value: The subscription name.

The SubName value takes precedence over all other identifier fields except the

userid unless VariableUserId is set on the subscription itself.

 If a subscription exists that matches the traditional identity of this command,

but has no SubName, the Request Update command fails.

 If an attempt is made to request an update for a subscription that has a

SubName using a command message that matches the traditional identity, but

with no SubName specified, the command succeeds.

Example

Here is an example of a NameValueString for a Request Update command

message. In the sample application, the results service uses this message to request

retained publications containing the latest scores for all teams. The subscriber’s

identity, including the CorrelId, is taken from the defaults in the MQMD.

 MQPSCommand ReqUpdate

 MQPSRegOpts CorrelAsId

 MQPSStreamName SAMPLE.BROKER.RESULTS.STREAM

 MQPSTopic Sport/Soccer/State/LatestScore/*

Error codes

The following reason codes might be returned in the NameValueString of the broker

response message to this command, in addition to those shown on page 88.

 Reason Reason text Explanation

3071 MQRCCF_STREAM_ERROR Stream name too long or contains invalid

characters.

3072 MQRCCF_TOPIC_ERROR Topic name has an invalid length or contains

invalid characters.

3073 MQRCCF_NOT_REGISTERED Publisher or subscriber not registered.

3074 MQRCCF_Q_MGR_NAME_ERROR Queue manager name invalid.

3076 MQRCCF_Q_NAME_ERROR Queue name invalid.

3077 MQRCCF_NO_RETAINED_MSG No retained message exists for this topic.

3078 MQRCCF_DUPLICATE_IDENTITY Publisher or subscriber identity already assigned to

another user ID.

3080 MQRCCF_CORREL_ID_ERROR Correlation identifier used as part of identity but is

all binary zero.

3081 MQRCCF_NOT_AUTHORIZED Subscriber not authorized to browse broker’s stream

queue or subscriber queue.

3082 MQRCCF_UNKNOWN_STREAM Stream not defined to broker and cannot be created.

3083 MQRCCF_REG_OPTIONS_ERROR Invalid registration options supplied.

Request Update

Chapter 7. Publish/Subscribe command messages 81

Reason Reason text Explanation

3153 MQRCCF_SUB_NAME_ERROR A subscription with no SubName matches the

traditional identity of the command.

Request Update

82 WebSphere MQ Publish/Subscribe User’s Guide

Chapter 8. Error handling and response messages

Messages sent to and by a broker are subject to exception processing, report

generation and dead-letter queue processing in the same way as other WebSphere

MQ messages. A message can indicate that a response is not required, is required

only if there is an error, only if the command succeeds, or always required.

Response messages can be generated by the broker to each command message

issued by a publisher or subscriber. Response messages indicate the success or

failure of a request and also the reason for the failure. Responses are given only by

the broker to which the messages are initially sent.

The following topics are discussed in this chapter:

v “Error handling by the broker”

v “Response messages” on page 84

v “Broker responses” on page 86

v “Problem determination” on page 88

Error handling by the broker

Any message received by a broker that is not of Format MQFMT_RF_HEADER (or

MQFMT_PCF in the case of the system management messages described in Part 4,

“System programming,” on page 139) is treated as an error. It is written to the

dead-letter queue (or discarded, depending on the report options), and an

exception report generated, if requested. If a message is of the correct format but

has some other error (for example, a syntax error), or if the broker cannot process

it correctly (for example, it cannot retain a message), the following happens:

v If a response has been requested, one is generated.

– If the response cannot be enqueued at the broker, the response is put to the

dead-letter queue (responses are always generated with MQRO_NONE).

– If the response cannot be put to the dead-letter queue, the response is

discarded if this is allowed (this depends on the type of response message),

depending on the broker configuration parameters.

– If the response could not be discarded or put to the reply-to queue or the

dead-letter queue, the command is backed out, and the input message is put

to the dead-letter queue with a Reason of

MQRCCF_BROKER_COMMAND_FAILED, or discarded, as indicated by the

report options. An exception report message is generated, if requested.

– If the input message or response cannot be put to the dead-letter queue or

discarded, the command is backed out and the input message is restored to

the input queue if the message is within syncpoint. The input message is

retried periodically, and (less frequently) a message is written to the queue

manager log to alert the administrator.
v If a response has not been requested, one is not sent, and no further action is

appropriate for this message.

If an input message is put to the dead-letter queue, no response and publication

messages are sent. It might be appropriate for the input message to be restored

and reprocessed when the error has been resolved.

© Copyright IBM Corp. 1998, 2005 83

If the message is a Publish command message, and there is a problem sending an

outgoing message on to a subscriber, the processing is as follows:

v The outgoing message is put to the dead-letter queue, if this is permitted by the

broker and queue manager configuration. If the outgoing message cannot be put

to the dead-letter queue because of a failure or because it is not permitted by the

broker and queue manager configuration, it is discarded if this is permitted by

the broker and queue manager configuration.

v If the outgoing message cannot be put to the dead-letter queue or discarded, the

input message is restored. The input message is retried after suitable time

interval, and (less frequently) a message is written to the log to alert the

administrator.

Note: If the broker cannot put a publication message onto a destination queue or

the dead-letter queue, and cannot discard the message, the broker continues

trying to put the publication message onto the destination queue (at suitable

intervals) and does not continue processing subsequent messages.

The dead-letter queue and discard options for nonpersistent messages are specified

in queue manager configuration file (qm.ini or equivalent). These options are

described in Chapter 10, “Setting up a broker,” on page 99.

Response messages

Each command message that the broker processes can generate a response

message. A response message has a similar format to a command message; the

NameValueString in the MQRFH header contains the response to the command.

Response messages are sent to the queue identified by the ReplyToQ and

ReplyToQMgr fields in the message descriptor of the original message.

The MsgType and Report options specified in the message descriptor of the

command message, together with the success or failure of the command, determine

whether response messages are sent or not. If no responses are requested, and the

command message contains an error, it is discarded.

Notes:

1. If there are multiple errors in a command message, a single response message

is generated.

2. Brokers do not request publishers or subscribers to generate responses.

Message descriptor for response messages

When the broker sends a response message, all the fields of the message descriptor

are set to their default values, except the following:

CorrelId

Set according to the Report options in the original command message. By

default, this means that the CorrelId is set to the same value as the MsgId of

the command message. This can be used to correlate commands with their

responses.

Expiry

The same value as in the original command message received by the broker.

Format

Set to MQFMT_RF_HEADER.

Error handling by the broker

84 WebSphere MQ Publish/Subscribe User’s Guide

MsgId

Set according to the Report options in the original command message. By

default, this means that it is set to MQMI_NONE, so that the queue manager

generates a unique value.

MsgType

Set to MQMT_REPLY.

Persistence

The same value as in the original command message.

Priority

The same value as in the original command message.

PutApplName

Set to the first 28 characters of the queue manager name.

PutApplType

Set to MQAT_QMGR.

Report

Set to zeroes.

 Other context fields are set as if generated with

MQPMO_PASS_IDENTITY_CONTEXT.

Types of error response

The broker generates three types of response:

OK response

This indicates that the command completed successfully. The response consists of a

message that contains an MQRFH format header with the CompCode tag name in

the NameValueString set to the value of MQCC_OK.

An OK response is sent by the broker if the command message was sent with a

MsgType of MQMT_REQUEST, or if it was sent with a MsgType of

MQMT_DATAGRAM and the MQRO_PAN Report option was set.

Warning response

This indicates that the command was only partially successful. The response

consists of a message that contains an MQRFH format header with the CompCode

tag name in the NameValueString set to the value of MQCC_WARNING. The

Reason and the ReasonText tag names and values identify the nature of the

warning.

A warning response is sent by the broker if the command message was sent with a

MsgType of MQMT_REQUEST, or if it was sent with a MsgType of

MQMT_DATAGRAM and either the MQRO_PAN or MQRO_NAN Report options

were set.

Error response

This indicates that the command has failed. The response consists of a message

that contains an MQRFH format header with the CompCode name in the

NameValueString set to the value of MQCC_FAILED. The Reason and the

ReasonText names and values identify the nature of the failure, and additional

names and values can be used to give more information.

Response messages

Chapter 8. Error handling and response messages 85

Error responses are sent by the broker if the command message was sent with a

MsgType of MQMT_REQUEST, or if it was sent with a MsgType of

MQMT_DATAGRAM and the MQRO_NAN Report option was set.

Broker responses

A Broker Response message is sent from a broker to the ReplyToQ of a publisher

or a subscriber, to indicate the success or failure of a command message received

by the broker.

The standard parameters listed below are always returned in the order shown. In

the case where an error is being reported, they can be followed by an optional

parameter (depending on the command message that failed) that gives more

information about the error.

With multiple errors, the group of standard and optional parameters are repeated

as necessary.

The NameValueString of the command message that caused an error is usually

appended to the broker response message following the MQRFH structure, to

assist in diagnosis of the error. However, in the case of an MQRC_RFH_ERROR or

MQRCCF_MSG_LENGTH_ERROR, the NameValueString of the command message

that caused the error is not appended to the broker response message.

Standard parameters

CompCode

name: "MQPSCompCode" (string constant: MQPS_COMPCODE)

value: The completion code is returned in decimal form, and takes one of

three values:

MQCC_OK

Command completed successfully

MQCC_WARNING

Command completed with warning

MQCC_FAILED

Command failed

Reason

name: "MQPSReason" (string constant: MQPS_REASON)

value: A decimal value corresponding to the error code. It is set to the value

of MQRC_NONE if CompCode is set to MQCC_OK.

Error codes are listed on page 88, and in the sections describing individual

command messages.

ReasonText

name: "MQPSReasonText" (string constant: MQPS_REASON_TEXT)

value: A string corresponding to the error code. It is set to MQRC_NONE if

CompCode is set to MQCC_OK.

Error codes are listed on page 88, and in the sections describing individual

command messages.

Optional parameters

Command

name: "MQPSCommand" (string constant: MQPS_COMMAND)

Response messages

86 WebSphere MQ Publish/Subscribe User’s Guide

value: The incorrect command that was specified when a command fails with

MQRC_RFH_COMMAND_ERROR.

DeleteOptions

name: "MQPSDelOpts" (string constant: MQPS_DELETE_OPTIONS)

value: The incorrect delete options that were specified when a command fails

with MQRCCF_DEL_OPTIONS_ERROR.

ErrorId

name: "MQPSErrorId" (string constant: MQPS_ERROR_ID)

value: An additional reason code (decimal value) when a command fails with

MQRCCF_Q_MGR_NAME_ERROR, MQRCCF_Q_NAME_ERROR or

MQRCCF_NOT_AUTHORIZED. For example, the value might be

MQRC_UNKNOWN_ENTITY indicating that the subscriber is not

authorized because it is unknown to the broker.

ErrorPos

name: "MQPSErrorPos" (string constant: MQPS_ERROR_POS)

value: A decimal value indicating the position in the NameValueString of the

command message sent to the broker at which an error was found. An

error at the first character is reported with an error position of zero.

 If the first ‘MQPS’ tag isn’t MQPSCommand, the command fails with an

MQRC_RFH_COMMAND_ERROR, and the MQPSErrorPos tag indicates

the position of the offending tag.

 If no ‘MQPS’ tags were encountered, the command fails with an

MQRC_RFH_COMMAND_ERROR, and the MQPSErrorPos tag is set to

the last character in the string.

 If an ‘MQPS’ tag doesn’t have a matching value, or a quoted name or

value doesn’t have a matching end quote, the command fails with an

MQRC_RFH_STRING_ERROR, and the MQPSErrorPos tag indicates the

position in the string where the error was detected.

ParameterId

name: "MQPSParmId" (string constant: MQPS_PARAMETER_ID)

value: The incorrect parameter that was specified, or the parameter that was

missing, when a command fails with MQRC_RFH_PARM_ERROR,

MQRC_RFH_DUPLICATE_PARM or MQRC_RFH_PARM_MISSING.

PublicationOptions

name: "MQPSPubOpts" (string constant: MQPS_PUBLICATION_OPTIONS)

value: The incorrect publication options that were specified when a command

fails with MQRCCF_PUB_OPTIONS_ERROR.

QMgrName

name: "MQPSQMgrName" (string constant: MQPS_Q_MGR_NAME)

value: The invalid queue manager name that was specified when a command

fails with MQRCCF_Q_MGR_NAME_ERROR.

QName

name: "MQPSQName" (string constant: MQPS_Q_NAME)

value: The invalid queue name that was specified when a command fails with

MQRCCF_Q_NAME_ERROR.

RegistrationOptions

name: "MQPSRegOpts" (string constant: MQPS_REGISTRATION_OPTIONS)

value: The incorrect registration options that were specified when a command

fails with MQRCCF_REG_OPTIONS_ERROR.

StreamName

Broker responses

Chapter 8. Error handling and response messages 87

name: "MQPSStreamName" (string constant: MQPS_STREAM_NAME)

value: The unknown or incorrect stream name that was specified when a

command fails with MQRCCF_UNKNOWN_STREAM or

MQRCCF_STREAM_ERROR.

Topic

name: "MQPSTopic" (string constant: MQPS_TOPIC)

value: Up to 256 characters of the incorrect topic name that was specified

when a command fails with MQRCCF_TOPIC_ERROR.

UserId

name: "MQPSUserId" (string constant: MQPS_USER_ID)

value: The user ID to which the publisher or subscriber is currently assigned

when a command fails with MQRCCF_DUPLICATE_IDENTITY.

Examples

Here are some examples of the NameValueString in a Broker Response message. A

successful response is as follows:

 MQPSCompCode 0

 MQPSReason 0

 MQPSReasonText MQRC_NONE

Examples of failure responses are:

 MQPSCompCode 2

 MQPSReason 2102

 MQPSReasonText MQRC_RESOURCE_PROBLEM

 MQPSCompCode 2

 MQPSReason 3082

 MQPSReasonText MQRCCF_REG_OPTIONS_ERROR

 MQPSRegOpts DeregAll

Error codes applicable to all commands

The following reason codes might be returned in the NameValueString of the

response message for any of the commands, in addition to the codes listed for each

command message. See WebSphere MQ Messages for detailed descriptions of these

codes.

 Reason Reason text Explanation

2334 MQRC_RFH_ERROR MQRFH structure not valid.

2335 MQRC_RFH_STRING_ERROR ″NameValueString″ field not valid.

2336 MQRC_RFH_COMMAND_ERROR Command not valid.

2337 MQRC_RFH_PARM_ERROR Parameter not valid.

2338 MQRC_RFH_DUPLICATE_PARM Duplicate parameter.

2339 MQRC_RFH_PARM_MISSING Parameter missing.

3016 MQRCCF_MSG_LENGTH_ERROR Message length not valid.

3023 MQRCCF_MD_FORMAT_ERROR Format not valid.

3050 MQRCCF_ENCODING_ERROR Encoding error.

3079 MQRCCF_INCORRECT_Q Command sent to wrong broker queue.

Problem determination

Check that you are not using WebSphere MQ facilities that are not supported by

WebSphere MQ Publish/Subscribe (see “Limitations” on page 31).

Broker responses

88 WebSphere MQ Publish/Subscribe User’s Guide

Problems with brokers are reported as AMQ58xx messages, which are described in

WebSphere MQ Messages.

Problems with the command messages sent to brokers by publisher and subscriber

applications are reported in broker response messages (described in “Broker

responses” on page 86). Set the MsgType and Report options in the message

descriptor of the command message so that the broker sends a response message

(see “The message descriptor” on page 29).

Even if there are no problems with the brokers and command messages, you might

find that subscribers do not receive the publications they expect. Here is a list of

possible causes:

v One or more of the brokers in the network isn’t running.

v The subscription has expired, or failed to be made in the first place.

 Use the amqspsd sample to check that the broker has knowledge of the

subscribing application’s subscription.
v If the publishing application is running at a different broker, a channel might be

down.

 Check that all channels between the publishing and subscribing brokers have

been started. If not, the subscriber’s publication might be sitting on a

transmission queue.
v If the publishing application is running at a different broker, the subscription

might not have been propagated to that broker yet.

 Even though a subscribing application has received a positive reply to its

Register Subscriber command message, the subscription might not have

propagated to the publishing broker. Check all channels between the

subscribing and publishing brokers. Also check the

SYSTEM.BROKER.CONTROL.QUEUE at each broker, because an

intermediate broker might not have processed the propagated subscription

yet.

Note that brokers process publish messages in batches. This is controlled by

the PublishBatchSize parameter (see “Broker configuration parameters” on

page 102). The effect of this is that, in general, publish messages are

processed more rapidly than subscriptions. If you are loading your system

with a large number of new subscriptions, there might be a delay before they

are propagated to all brokers in the network.
v The publishing application might not have published successfully.

 Don’t always assume that the problem is with the subscribing application.

Make sure that the publishing application received a positive response

message from its broker. If it is publishing using MQMT_DATAGRAM

messages and doesn’t specify either the MQRO_NAN or MQRO_PAN report

options, the broker won’t send it a reply message, even if the Publish

command messages fails. If such a publishing application doesn’t use the

NoReg publication option, it must set up a valid ReplyToQ in the message

descriptor.
v The broker might be putting the subscriber’s publications to the dead-letter

queue.

 There might be a problem with the subscriber’s queue. For example, it might

be put-inhibited or the publications might be too large for the queue. In this

case the broker, by default, puts these messages to the dead-letter queue

(DLQ). Check the DLQ at the subscriber’s broker. The broker also issues

message AMQ5882 if it has had to put a message to the DLQ.
v The stream might not be supported by all necessary brokers.

Problem determination

Chapter 8. Error handling and response messages 89

If the publication is not being published on the default stream, all brokers in

the network between the publishing and subscribing brokers must support

the stream you are using. Use the amqspsd sample to check that the stream is

supported by all necessary brokers.

Problem determination

90 WebSphere MQ Publish/Subscribe User’s Guide

Chapter 9. Sample programs

Table 4 shows the techniques demonstrated by the sample programs supplied with

WebSphere MQ Publish/Subscribe on AIX, HP-UX, Linux, Solaris, and Windows.

 Table 4. Sample programs for AIX, HP-UX, Linux, Solaris, and Windows

Technique C source Executable MQSC script

Results service amqsresa.c amqsres -

Match simulator amqsgama.c amqsgam -

Administration application amqspsda.c amqspsd -

Routing exit amqspsra.c - -

Create definitions for sample application - - amqsresa.tst

Create stream on another broker - - amqsgama.tst

Create administration app. reply queue - - amqspsda.tst

Create SYSTEM.BROKER.MODEL.STREAM - - amqsfmda.tst

Table 5 shows the techniques demonstrated by the sample programs supplied with

WebSphere MQ Publish/Subscribe on iSeries.

 Table 5. Sample programs for iSeries

Technique C source Executable MQSC script

Results service AMQSRESA AMQSRESA -

Match simulator AMQSGAMA AMQSGAMA -

Administration application AMQSPSDA AMQSPSDA -

Routing exit AMQSPSRA - -

Create definitions for sample application - - AMQSRESA

Create stream on another broker - - AMQSGAMA

Create administration app. reply queue - - AMQSPSDA

Create SYSTEM.BROKER.MODEL.STREAM - - AMQSFMDA

You can find the samples in the following directories (libraries for iSeries).

AIX

source files and MQSC scripts

/usr/mqm/samp/pubsub

amqspsda.*

/usr/mqm/samp/pubsub/admin
executables

/usr/mqm/samp/bin

HP-UX, Linux, and Solaris

source files and MQSC scripts

/opt/mqm/samp/pubsub

amqspsda.*

/opt/mqm/samp/pubsub/admin

© Copyright IBM Corp. 1998, 2005 91

executables

/opt/mqm/samp/bin

iSeries

source files

QMQMSAMP\QCSRC

MQSC scripts

QMQMSAMP\QMQSC

executables

QMQM

Windows

source files and MQSC scripts

<drive:directory>\WebSphere MQ\TOOLS\C\SAMPLES\PUBSUB

amqspsda.*

<drive:directory>\WebSphere MQ\TOOLS\C\SAMPLES\PUBSUB\admin
executables

<drive:directory>\WebSphere MQ\TOOLS\C\SAMPLES\BIN

The sample programs are described in the following sections:

v amqsres and amqsgam in “Sample application”

v amqspsd in “Sample program for administration information” on page 157

v amqspsr in “Sample routing exit” on page 137

You must start the queue manager before running the MQSC scripts. In addition,

before running the executables, you must start the broker (see Chapter 11,

“Controlling the broker,” on page 107).

Instructions for compiling the samples can be found in the WebSphere MQ

Application Programming Guide.

Sample application

The following aspects of the results service application are described in “Sample

application” on page 15:

v The use of streams other than the default stream.

v Event publications (not retained).

v State publications (retained).

v Wildcard matching of topic strings.

v Multiple publishers on the same topics (event publications only).

v The need to subscribe to a topic before it is published on (event publications).

v A subscriber continuing to be sent publications when that subscriber (not its

subscription) is interrupted.

v The use of retained publications to recover state after a subscriber failure.

The application’s use of multiple subscription identities on the same subscriber

queue is covered in “Publisher and subscriber identity” on page 27, and the

following aspects are described in Chapter 6, “Format of command messages,” on

page 47:

v MQRFH format messages.

v MQRFH NameValueString parsing.

v MQRFH broker response message checking.

Sample programs

92 WebSphere MQ Publish/Subscribe User’s Guide

v Publish, Register Subscriber, Request Update, Delete Publication and

Deregister Subscriber command messages.

v Separate user data in Publish messages.

Running the application

To run the application on a single queue manager, first start the queue manager

and then enter the following command:

 runmqsc QMgrName < amqsresa.tst

where QMgrName is the queue manager that the results service will use (if QMgrName

is omitted, the default queue manager will be assumed). This creates the

appropriate queues on the queue manager. Then start the broker (see Chapter 11,

“Controlling the broker,” on page 107).

The results service program is started by entering the following:

 amqsres QMgrName

QMgrName is optional, and defaults to the default queue manager. The results service

produces the following output:

 Results Service is ready for match input,

 instances of amqsgam can now be started.

You can now start one or more match simulators by entering the following

command:

 amqsgam Team1 Team2 QMgrName

QMgrName is optional, as before.

Typical output from a match simulator is:

 Match between Team1 and Team2

 GOAL! Team2 scores after 20 minutes

 GOAL! Team1 scores after 25 minutes

 GOAL! Team1 scores after 38 minutes

 GOAL! Team2 scores after 73 minutes

 Full time

This would produce corresponding output from the results service, for example:

 LATEST: Team1 0, Team2 0

 LATEST: Team1 0, Team2 1

 LATEST: Team1 1, Team2 1

 LATEST: Team1 2, Team2 1

 LATEST: Team1 2, Team2 2

 FULLTIME: Team1 2, Team2 2

A match simulator can be run on a different queue manager in the broker

hierarchy if required. In this case, you need to enter the following command to

create the appropriate stream queue on that queue manager:

 runmqsc QMgrName < amqsgama.tst

You must do this before starting the results service and the match simulator.

The team names must be 31 characters or less in length, and contain no blanks.

The simulator runs for 30 seconds and scores goals at random for each side.

The simulator publishes event publications on the following topics:

Sample application

Chapter 9. Sample programs 93

Sport/Soccer/Event/MatchStarted

 Sport/Soccer/Event/ScoreUpdate

 Sport/Soccer/Event/MatchEnded

The UserData is contained in a formatted string following the NameValueString of

the MQRFH header. In the case of ‘MatchStarted’ or ‘MatchEnded’ it consists of

both team names in the following structure:

 {

 MQCHAR32 Team1;

 MQCHAR32 Team2;

 }

For a ‘ScoreUpdate’ the UserData consists of the name of the team that scored, for

example:

 MQCHAR32 TeamThatScored;

The team names are NULL padded to 32 characters.

The results service program subscribes to these three topics to monitor the state of

play in the matches that are active. It publishes the latest score in the match

between Team1 and Team2 on the following topic:

Sport/Soccer/State/LatestScore/Team1 Team2

In this case the UserData is a variable string containing the data in the format:

"Team1Score Team2Score"

For example "0 0" or "2 1".

Figure 20 on page 95 illustrates the situation when four match simulators are

running.

Sample application

94 WebSphere MQ Publish/Subscribe User’s Guide

When a match has ended, the retained publication that contains its latest score is

deleted. After a period of inactivity (45 seconds), the results service deregisters the

subscription from the Sport/Soccer/Event/* topic and the program ends with the

message:

 Results Service has ended

If the results service program (amqsres) is stopped and restarted while the match

simulators are still running, the results are restored to their correct values and

processing continues as before.

Possible extensions

The sample application illustrates many aspects of a WebSphere MQ

Publish/Subscribe system. Possible extensions that might be implemented by the

user include:

v Distribute the results service and match simulators across multiple connected

brokers.

v Extend the application to handle more than one sport, and have a results service

running for each sport.

Sport/Soccer/Event/....
Sport/Soccer/Event/....

Sport/Soccer/Event/....

SAMPLE.BROKER.RESULTS.STREAM

Publisher Publisher Publisher

Match Simulator 1

Sport/Soccer/State/LatestScore/....

Match 4

Match 3

Match 2

Match 1

Match Simulator 2 Match Simulator 3 Match Simulator 4

Publisher

event publications event publications

event
publications

event publications event publications

Publisher

Subscriber

Results Service

state
publications

Figure 20. Results service running with four match simulators. The match simulators send event publications to three

topics (MatchStarted, ScoreUpdate, MatchEnded). The results service subscribes to these, and sends state

publications to four state topics (the LatestScore for each match).

Sample application

Chapter 9. Sample programs 95

v Extend the results service to publish the final score when a match ends, and add

another application that subscribes to these publications to produce a table of

results.

v Extend the match simulator to confirm that a results service is subscribing to

Sport/Soccer/Events/* topics before it starts publishing. This can be done using

metatopics.

v Change the format of the user data in the publications, create a user defined

format, and write a data conversion exit to enable the passing of publications

between different platforms or languages.

Application Messaging Interface samples

For sample publisher and subscriber programs that use the Application Messaging

Interface in C, C++, and Java, see the WebSphere MQ Application Messaging Interface

book.

Sample application

96 WebSphere MQ Publish/Subscribe User’s Guide

Part 3. Managing the broker

Chapter 10. Setting up a broker 99

Broker queues 99

System queues 99

Other stream queues 100

SYSTEM.BROKER.MODEL.STREAM . . . 100

Internal queues 101

Dead-letter queue 101

Other considerations 101

Access control 101

Backup 101

Broker configuration stanza 102

Broker configuration parameters 102

Chapter 11. Controlling the broker 107

Starting a broker 107

Using triggering to start the broker 107

Stopping a broker 107

Displaying the status of a broker 107

Adding a stream 107

Creating a stream queue 107

Informing other brokers about the stream . . . 108

Deleting a stream 108

Deleting a stream on an isolated broker . . . 108

Deleting a stream on a broker that is part of a

network 108

Adding a broker to a network 109

Deleting a broker from the network 109

Problems when deleting brokers 110

Deleting a broker that has a child broker . . . 110

Sequence of commands for adding and deleting

brokers 110

Chapter 12. Control commands 113

clrmqbrk (Clear broker’s memory of a neighboring

target broker) 114

dltmqbrk (Delete broker) 117

dspmqbrk (Display broker status) 119

endmqbrk (End broker function) 121

migmqbrk (Migrate broker to WebSphere Business

Integration Brokers) 123

strmqbrk (Start broker function) 125

Chapter 13. Message broker exit 129

Publish/subscribe routing exit 129

Parameters 129

Usage notes 129

C invocation 130

Publish/subscribe routing exit parameter

structure 130

Fields 131

C declaration 136

Writing a publish/subscribe routing exit program 136

Limitations on WebSphere MQ work done in

the routing exit 136

Security considerations 137

Compiling a publish/subscribe routing exit

program 137

Sample routing exit 137

© Copyright IBM Corp. 1998, 2005 97

98 WebSphere MQ Publish/Subscribe User’s Guide

Chapter 10. Setting up a broker

Publishers, subscribers, and brokers communicate by using queues. Configuration

and monitoring of these queues can be performed by whatever technique is

currently in use for WebSphere MQ, whether supplied by WebSphere MQ or

available from third parties.

Before you can use WebSphere MQ Publish/Subscribe you need to do the

following things to set up your broker:

1. If necessary, define the queues that the broker needs to use.

2. Authorize applications to use these queues.

3. Review the default settings of the broker parameters in the queue manager

initialization file (qm.ini) or review them using WebSphere MQ Explorer.

For information about managing your brokers when they have been set up, see

Chapter 11, “Controlling the broker,” on page 107.

How to find out about publishers and subscribers registered with brokers, and

how to write applications to manage a network of brokers is explained in Part 4,

“System programming,” on page 139.

Broker queues

Brokers are event-driven; they wait for messages to arrive on their queues. The

broker needs several system queues, and can also have any number of stream

queues; these are described below.

System queues

The broker uses three system queues. These queues all have names beginning with

SYSTEM.BROKER, and are used for the purposes described below. These queues

are created automatically when the broker starts if they do not already exist. You

might want to alter access authority to these queues.

SYSTEM.BROKER.CONTROL.QUEUE

This is the broker’s control queue. Publisher and subscriber applications,

and other brokers, send all command messages (except publications and

requests to delete publications) to this queue.

 SYSTEM.BROKER.CONTROL.QUEUE is created as a predefined queue

based on the SYSTEM.DEFAULT.LOCAL.QUEUE.

SYSTEM.BROKER.DEFAULT.STREAM

This is the queue that receives all publication messages for the default

stream. Applications can also send requests to delete publications on the

default stream to this queue.

 SYSTEM.BROKER.DEFAULT.STREAM is created using

SYSTEM.BROKER.MODEL.STREAM if it exists, otherwise the broker

predefines it based on the SYSTEM.DEFAULT.LOCAL.QUEUE.

Note: SYSTEM.BROKER.DEFAULT.STREAM is created with a default

persistence of yes. This means that an application using the

© Copyright IBM Corp. 1998, 2005 99

MQPER_AS_Q_DEF option in the message descriptor (the default)

publishes persistent messages by default.

SYSTEM.BROKER.ADMIN.STREAM

This is the queue that the broker uses to publish its own broker

configuration information (for example the identity of its parent). If you

write your own administration applications, they can use the information

published on this stream. You can also publish information on this stream

(but not to topics with names beginning MQ/).

 SYSTEM.BROKER.ADMIN.STREAM is created using

SYSTEM.BROKER.MODEL.STREAM if it exists, otherwise the broker

predefines it based on the SYSTEM.DEFAULT.LOCAL.QUEUE.

Other stream queues

Stream queues are used to process publications for all topics within a stream.

Applications send publications (and requests to delete publications) to a stream

queue. The stream queue must be a local queue at the broker, not an alias or

remote queue. Applications can send messages to a stream queue through an alias

or remote queue.

Publishing applications can register with the broker before they start sending

publications. If the application specifies that it will be using a stream queue that

does not yet exist, the broker might create a permanent dynamic queue with the

same name as the stream specified, based on the

SYSTEM.BROKER.MODEL.STREAM queue.

If the SYSTEM.BROKER.MODEL.STREAM queue does not exist, any message sent

by an application that refers to a stream for which there is no stream queue, is

rejected. The broker keeps information about which streams are known to it so

that, when it is restarted, it can recognize the stream queues.

Applications can also specify the stream name in a publication message. If a

publication message specifies the name of a stream that is different from the name

of the queue to which it was sent, the message is rejected. If the application does

not specify a stream name, it defaults to the name of the stream queue to which it

is sent.

If you are using a network of brokers, and you want to restrict a certain stream to

a particular sub-tree of the hierarchy, brokers immediately outside the sub-tree

must not have a SYSTEM.MODEL.STREAM.QUEUE defined. All stream queues for

streams that these brokers support must, therefore, be defined by the administrator.

SYSTEM.BROKER.MODEL.STREAM

The SYSTEM.BROKER.MODEL.STREAM is a model queue definition that can be

used by the broker to create dynamic queues to receive publications for streams

other than the default stream. This is used only if the stream queue does not

already exist. This definition must specify that the dynamic queue to be created is

a permanent-dynamic queue. If this queue does not exist, all stream queues must

be defined by the administrator. (The administrator can also define stream queues

manually, even if this queue does exist.)

This queue is supplied as sample amqsfmda.tst (see page 91). To create the queue

from the sample, use the following command:

runmqsc QMgrName < amqsfmda.tst

Broker queues

100 WebSphere MQ Publish/Subscribe User’s Guide

where QMgrName is the name of the queue manager.

Internal queues

The broker creates several other queues for its own internal use. These queues also

have names beginning with SYSTEM.BROKER. The broker uses them to store its

persistent state, such as subscriptions and retained publications.

Dead-letter queue

You are recommended to set up a dead-letter queue for each queue manager that

has a broker running on it. This enables the broker to continue operating when

problems are encountered, such as a subscriber’s queue being full. In this case

publications for that subscriber are put to the dead-letter queue, and the broker

continues to process publish command messages.

Without a dead-letter queue you might also have problems if you want to delete

that broker from the network (see “Deleting a broker from the network” on page

109).

Other considerations

Some things you should consider when setting up a broker are:

v Access control

v Backup

Access control

Normal WebSphere MQ access control techniques apply to applications and

brokers opening queues for Publish/Subscribe messages. These authorization

checks are carried out using standard WebSphere MQ functions. The authority is

tested before any message is sent to a particular identity after a broker restart, but

not necessarily each subsequent time a message is put (see “Streams” on page 10).

Any application putting a message to the broker’s

SYSTEM.BROKER.CONTROL.QUEUE must have authorization to put messages to

this queue.

A publisher must be authorized to put messages on the broker’s appropriate

stream queue.

Subscribers must be authorized to browse the broker’s stream queue; this is

checked by the broker because the subscriber does not try to open the broker’s

stream queue. In addition, a subscriber must have authority to put messages on

the subscriber queue that the publications will be sent to.

There is no topic based security; the access check is for the stream and there are no

further checks on topics within a particular stream.

Backup

Normal WebSphere MQ backup and restore procedures apply, as described in the

WebSphere MQ System Administration Guide. When a queue manager is backed up, a

broker installed on that queue manager is backed up as well.

Broker queues

Chapter 10. Setting up a broker 101

Broker configuration stanza

On UNIX systems, broker parameters are controlled by the Broker stanza of the

queue manager configuration file, qm.ini. Figure 21 shows an example of this

stanza. On Windows, you can view and update these settings using the Broker

page of the queue manager properties in WebSphere MQ Explorer.

1. Right-click the queue manager and select Properties.

2. Select Broker in the left-hand pane of the dialog. The Broker properties are

displayed in the right-hand pane.

3. If you make any changes to the values, click Apply then OK.

The parameters are described in “Broker configuration parameters.”

Note: You do not need to list parameters if you are using their default values. Any

parameters that you do list are checked for validity. A blank entry is not

valid.

Broker configuration parameters

MaxMsgRetryCount=number

When the broker fails to process a command message under syncpoint (for

example a publish message that cannot be delivered to a subscriber because

the subscriber queue is full and it is not possible to put the publication to the

dead-letter queue), the unit of work is backed out and the command retried

this number of times before the broker attempts to process the command

message according to its report options instead.

 The default is MaxMsgRetryCount=5.

StreamsPerProcess=number

The broker consists of a broker main process (runmqbrk) and a number of

broker worker processes (amqfcxba). Each worker process is capable of

supporting one or more streams. Depending upon the broker configuration (for

example the operating system, number of streams, number of publishers,

Broker:

 MaxMsgRetryCount=5

 StreamsPerProcess=1

 OpenCacheSize=128

 OpenCacheExpiry=300

 PublishBatchSize=5

 PublishBatchInterval=0

 ChkPtMsgSize=100000

 ChkPtActiveCount=400

 ChkPtRestartCount=40

 RoutingExitPath=/opt/mqm/samp/bin/amqspsra(RoutingExit)

 RoutingExitConnectType=STANDARD

 RoutingExitAuthorityCheck=no

 RoutingExitData=My routing exit string data

 SyncPointIfPersistent=no

 DiscardNonPersistentInputMsg=no

 DLQNonPersistentResponse=yes

 DiscardNonPersistentResponse=no

 DLQNonPersistentPublication=yes

 DiscardNonPersistentPublication=no

 GroupId=nobody

 JmsStreamPrefix=JMS

Figure 21. Sample Broker stanza for qm.ini

Broker configuration

102 WebSphere MQ Publish/Subscribe User’s Guide

subscribers and retained messages, whether a non-fastpath routing exit is in

use), varying this number can alter capacity or throughput (or both).

 If you have a large number of lightly loaded streams, increase this value.

 The defaults are:

AIX

 StreamsPerProcess=10 (RoutingExitConnectType=Standard)

 StreamsPerProcess=1 (RoutingExitConnectType=Fastpath)

 StreamsPerProcess=1 (no routing exit)

HP-UX, Linux, and Solaris

 StreamsPerProcess=10

Windows

 StreamsPerProcess=10

OpenCacheSize=number

Each broker stream thread (2 threads for each stream) keeps a cache of recently

used open queues. This parameter specifies the maximum number of queues in

the cache.

 The default is OpenCacheSize=128.

OpenCacheExpiry=number

Each broker stream thread (2 threads for each stream) keeps a cache of recently

used open queues. If a queue in the cache is not used for approximately

OpenCacheExpiry seconds, the queue is removed from the cache (closed).

 The default is OpenCacheExpiry=300.

PublishBatchSize=number

The broker normally processes publish messages within syncpoint. It can be

inefficient to commit each publication individually, and in some circumstances

the broker can process multiple publish messages in a single unit of work. This

parameter specifies the maximum number of publish messages that can be

processed in a single unit of work.

 The default is PublishBatchSize=5.

PublishBatchInterval=number

The broker normally processes publish messages within syncpoint. It can be

inefficient to commit each publication individually, and in some circumstances

the broker can process multiple publish messages in a single unit of work. This

parameter specifies the maximum time (in milliseconds) between the first

message in a batch and any subsequent publication included in the same

batch. A batch interval of 0 indicates that up to PublishBatchSize messages can

be processed, provided that the messages are available immediately.

 The default is PublishBatchInterval=0.

ChkPtMsgSize=number

The broker stores individual publisher and subscriber registrations as messages

on its internal queues. Periodically, it might consolidate a number of these

registrations into a smaller number of larger messages called checkpoint

messages. This action is called checkpointing and is performed to reduce the

number of messages that need to be read to restore the publisher and

subscriber registrations at broker and stream restart.

 The ChkPtMsgSize parameter determines the default size of each checkpoint

message in bytes, which in turn determines the number of registrations that

each checkpoint message can contain.

Broker configuration

Chapter 10. Setting up a broker 103

The default is ChkPtMsgSize=100000.

ChkPtActiveCount=number

The broker stores individual publisher and subscriber registrations as messages

on its internal queues. Periodically it might consolidate a number of these

registrations into a smaller number of larger messages called checkpoint

messages. This action is called checkpointing and is performed to reduce the

number of messages that need to be read to restore the publisher and

subscriber registrations at broker and stream restart.

 The number of changes that need to be made to part of the registration state of

an individual stream during normal broker operation before checkpointing is

considered for that part depends on the ChkPtActiveCount parameter.

 The default is ChkPtActiveCount=400. A lower value makes checkpointing

occur more frequently. A higher value makes checkpointing occur less

frequently. A value of 0 disables checkpointing completely during normal

operation and would be applicable if checkpoint activity was having an

adverse effect on broker throughput.

ChkPtRestartCount=number

The broker stores individual publisher and subscriber registrations as messages

on its internal queues. Periodically it might consolidate a number of these

registrations into a smaller number of larger messages called checkpoint

messages. This action is called checkpointing and is performed to reduce the

number of messages that need to be read to restore the publisher and

subscriber registrations at broker and stream restart.

 The number of changes that need to have been made to part of the registration

state of an individual stream during broker or stream restart before

checkpointing is considered for that part depends on the ChkPtRestartCount

parameter.

 The default is ChkPtRestartCount=40. This is lower than the ChkPtActiveCount

on the assumption that stream or broker restart is a more suitable time for the

registration state to be checkpointed. A value of 0 disables checkpointing

completely during restart.

RoutingExitPath=[path]module_name(function_name)

Before the broker sends a publication to a subscriber, the broker invokes the

exit identified by the RoutingExitPath (if any).

 The default is no routing exit.

RoutingExitConnectType=FASTPATH|STANDARD

If the broker is configured to use a routing exit, the exit runs within a broker

process. If the exit conforms to the requirements of a fastpath application

(MQCNO_FASTPATH_BINDING), the broker process can use a fastpath

connection to the queue manager. This attribute informs the broker if the exit

meets the standards necessary for a fastpath application.

Note: This attribute is relevant only if a RoutingExitPath is specified. For

performance reasons RoutingExitConnectType=FASTPATH is desirable.

The default is RoutingExitConnectType=STANDARD.

RoutingExitAuthorityCheck=yes|no

Before the broker sends a publication to a subscriber the broker must have

validated the subscribers authority to write to the subscriber queue. If the

routing exit changes the message destination, the authority check already

Broker configuration

104 WebSphere MQ Publish/Subscribe User’s Guide

performed by the broker is not valid. This attribute informs the broker if the

authority check should be repeated for any changed destination.

Note: The performance implications of setting RoutingExitAuthorityCheck=yes

are considerable if the routing exit frequently changes the destination.

The default is RoutingExitAuthorityCheck=no.

RoutingExitData=string

If the broker is using a routing exit, the broker invokes the routing exit passing

an MQPXP structure as input. The data specified using this attribute is

provided in the ExitData field. The string can be up to

MQ_EXIT_DATA_LENGTH characters in length.

 The default is 32 blank characters.

SyncPointIfPersistent=yes|no

If this attribute is specified, when the broker reads a publish or delete

publication message from a stream queue during normal operation the broker

specifies MQGMO_SYNCPOINT_IF_PERSISTENT. This makes the broker

receive nonpersistent messages outside syncpoint. If the broker receives a

publication outside syncpoint, the broker forwards that publication to

subscribers known to the broker outside syncpoint.

 When using SyncPointIfPersistent=yes it is possible that a nonpersistent

publication might not be delivered to all subscribers known to a broker (for

example, if an immediate broker shutdown occurred while a publish message

was being processed). If SyncPointIfPersistent=yes is specified, the broker

performance for publishing nonpersistent publications improves.

 The default is SyncPointIfPersistent=yes.

DiscardNonPersistentInputMsg=yes|no

If the broker cannot process a nonpersistent input message, the broker might

attempt to write the input message to the dead-letter queue (depending on the

report options of the input message). If the attempt to write the input message

to the dead-letter queue fails, and the MQRO_DISCARD_MSG report option

was specified on the input message or DiscardNonPersistentInputMsg=yes, the

broker discards the input message. If DiscardNonPersistentInputMsg=no is

specified, the broker will only discard the input message if the

MQRO_DISCARD_MSG report option was set in the input message.

 The defaults are:

 DiscardNonPersistentInputMsg=no if SyncPointIfPersistent=no.

 DiscardNonPersistentInputMsg=yes if SyncPointIfPersistent=yes.

Note: If SyncPointIfPersistent=yes is set, DiscardNonPersistentInputMsg=no

must not be set.

DLQNonPersistentResponse=yes|no

If the broker attempts to generate a response message in response to a

nonpersistent input message, and the response message cannot be delivered to

the reply-to queue, this attribute indicates whether the broker should write the

undeliverable response message to the dead-letter queue.

 The default is DLQNonPersistentResponse=yes.

DiscardNonPersistentResponse=yes|no

If the broker attempts to generate a response message in response to a

nonpersistent input message, and the response message cannot be delivered to

Broker configuration

Chapter 10. Setting up a broker 105

the reply-to queue or written to the dead-letter queue, this attribute indicates

whether the broker can discard the undeliverable response message.

 The default is:

 DiscardNonPersistentResponse=no if SyncPointIfPersistent=no.

 DiscardNonPersistentResponse=yes if SyncPointIfPersistent=yes.

Note: If SyncPointIfPersistent=yes is set, DiscardNonPersistentResponse=no

must not be set.

DLQNonPersistentPublication=yes|no

If the broker fails to send a nonpersistent publication to a subscriber, this

attribute indicates whether the broker should put the publication to the

dead-letter queue.

 The default is DLQNonPersistentPublication=yes.

DiscardNonPersistentPublication=yes|no

If the broker fails to send a nonpersistent publication to a subscriber and

cannot write the publication to the dead-letter queue, this attribute indicates

whether the broker can discard the publication.

 The default is:

 DiscardNonPersistentPublication=no if SyncPointIfPersistent=no.

 DiscardNonPersistentPublication=yes if SyncPointIfPersistent=yes.

Note: If SyncPointIfPersistent=yes is set,

DiscardNonPersistentPublication=no must not be set.

GroupId=group_identifier

Specifies the group that owns the stream queues created by the broker, except

the admin stream (for example, SYSTEM.BROKER.DEFAULT.STREAM). Users

in this group can access the stream queues. If this group does not exist, the

broker cannot run.

 If not specified, the following defaults are used (this normally means that all

users can access the stream queues):

AIX, Linux, and Solaris

 GroupId=nobody

HP-UX

 GroupId=nogroup

iSeries

 GroupId=*PUBLIC

Windows

 GroupId=Users

Note: For WebSphere MQ for Windows, the GroupId is set to ‘Users’ or the

national language equivalent.

JmsStreamPrefix=JMS

Identifies stream names. For example, stream names beginning with JMS are

restricted to JMS semantics.

 The default is JMS.

 You can use JMS characteristics to improve your broker performance.

Broker configuration

106 WebSphere MQ Publish/Subscribe User’s Guide

Chapter 11. Controlling the broker

This chapter describes the following broker operations:

v “Starting a broker”

v “Stopping a broker”

v “Displaying the status of a broker”

v “Adding a stream”

v “Deleting a stream” on page 108

v “Adding a broker to a network” on page 109

v “Deleting a broker from the network” on page 109

Part 4, “System programming,” on page 139 explains how to find out about

publishers and subscribers registered with brokers, and how to write applications

to manage a network of brokers.

Starting a broker

Use the strmqbrk command (STRMQMBRK on iSeries) to start a broker. This

command starts the broker on the specified queue manager, either initially, or as a

restart after an endmqbrk command (ENDMQMBRK on iSeries). This command

is described in “strmqbrk (Start broker function)” on page 125.

Using triggering to start the broker

You can start a broker by enabling triggering on any of the broker’s queues.

Specify triggering on the first message. However, if a broker is triggered on more

than one of its stream queues, a trigger message is generated for each queue at

startup.

Stopping a broker

Use the endmqbrk command (ENDMQMBRK on iSeries) to stop a broker. This

command stops the broker on the specified queue manager and is described in

“endmqbrk (End broker function)” on page 121.

Displaying the status of a broker

Use the dspmqbrk command (DSPMQMBRK on iSeries) to display the status of

the broker for the specified queue manager. This command is described in

“dspmqbrk (Display broker status)” on page 119.

Adding a stream

The following things need to happen for a stream to be created:

v A queue must be created to hold publications for that stream.

v Information about the stream has to be passed to other brokers in the network

that need to support the stream.

Creating a stream queue

The stream queue has the same name as the stream, and is usually created by the

operator. There should be one instance of the stream queue at each broker that

supports the stream.

© Copyright IBM Corp. 1998, 2005 107

Alternatively, you can let the broker create the stream queue dynamically when it

is needed. The queue is based on the model queue definition

SYSTEM.BROKER.MODEL.STREAM if this is available. If the model queue

definition is not available, the broker will not create stream queues dynamically.

Note: If the queue is created dynamically, the operator must grant the required

access authority to applications using the queue, so use dynamic stream

queue creation only in a test environment.

Informing other brokers about the stream

When a stream is first referenced by a publisher or subscriber (for example, when

a registration request is sent to the broker’s control queue) the broker informs its

neighbors that the stream exists. If the neighboring brokers also have a queue

defined for the stream (or can create one using

SYSTEM.BROKER.MODEL.STREAM), they also recognize the stream and pass

information about it to their neighbors.

If a broker that is told about the stream does not have a queue for the stream and

does not have the SYSTEM.BROKER.MODEL.STREAM, it does not pass

information about the stream to its neighbors.

Deleting a stream

Before you delete a stream, quiesce all applications that use the stream.

To delete a stream, you need to delete the stream queue. To delete the queue, you

must ensure that no applications (or channels) have the queue open. If there are

messages on the queue, you must remove them from the queue, or purge them

when you delete the queue.

You must also ensure that you do not have a definition of the

SYSTEM.BROKER.MODEL.STREAM on the broker. If you do, and the old one is

deleted, a new version of the stream queue is created dynamically when the broker

is restarted.

Deleting a stream on an isolated broker

To delete a stream on a broker that is not part of a broker network:

1. Stop the broker using endmqbrk (ENDMQMBRK on iSeries).

2. Delete the queue.

3. Restart the broker using strmqbrk (STRMQMBRK on iSeries).

When the broker realizes that the queue no longer exists, it deregisters all

subscriptions to the stream, and publishes a message to the

SYSTEM.BROKER.ADMIN.STREAM advertising that the stream has been deleted.

(For information about the format of this message see “Format of broker

administration messages” on page 141.)

Deleting a stream on a broker that is part of a network

A stream on a broker that is part of a broker network is deleted in the same way

as for an isolated broker. Other brokers in the network are advised that the stream

has been deleted and stop sending publications and subscription requests to the

broker for that stream. Messages sent from other brokers before they receive

notification that the stream has been deleted are handled as follows:

v Publication messages are put to the dead-letter queue.

Adding a stream

108 WebSphere MQ Publish/Subscribe User’s Guide

v Registration messages are put to the dead-letter queue.

Adding a broker to a network

You are recommended to define the broker topology from the root down.

Before you can add a broker to the network, channels in both directions must exist

between the queue manager that hosts the new broker and the queue manager that

hosts the parent. Brokers use explicit addressing when sending messages to queues

that reside on another queue manager. When the queue is opened by the broker,

both the queue and queue manager names are specified. To facilitate multi-broker

operation, this queue manager name must resolve to the appropriate transmission

queue. The simplest method of achieving this is for the transmission queue to have

the same name as the remote queue manager name.

If you do not adopt this naming scheme, queue manager alias definition can be

used to ensure that messages get placed on the appropriate transmission queue.

For example, to specify that messages sent to queue manager PARENT are placed

on transmission queue, PARENT.XMITQ:

DEFINE QREMOTE (PARENT) RNAME() RQMNAME(PARENT) XMITQ(PARENT.XMITQ)

To specify that messages sent to queue manager PARENT are placed on

transmission queue, PARENT.XMITQ on iSeries:

CRTMQMQ QNAME(PARENT) QTYPE(*RMT) RMTMQMNAME(PARENT) TMQMNAME(PARENT.XMITQ)

To add a broker to the network, start the broker with the strmqbrk command

(STRMQMBRK on iSeries), specifying the name of the parent broker if

appropriate. When the broker has been started with a parent named you cannot

change the name of its parent, even when the broker is restarted. You cannot

change the parent of a broker as part of normal operational procedures without

disrupting service. This command is described in “strmqbrk (Start broker

function)” on page 125.

Deleting a broker from the network

Brokers must always be deleted from the bottom of the broker hierarchy. You

cannot delete a broker if it has one or more child brokers. (See “Sequence of

commands for adding and deleting brokers” on page 110 for more information.)

The broker needs to delete any queues that were created by the broker, so these

queues need to be closed and empty.

1. Stop the broker using endmqbrk (ENDMQMBRK on iSeries).

2. Quiesce all applications that use the broker.

3. Applications and brokers can use channels to talk to the broker, so receiving

channels might have queues open. If a channel has a queue open, stop and

restart the channel.

4. Use the dltmqbrk command (DLTMQMBRK on iSeries) to delete the broker.

This command is described in “dltmqbrk (Delete broker)” on page 117.

The broker performs the actions listed in “dltmqbrk (Delete broker)” on page 117

and sends a message to tell its parent broker that it is no longer active. This

message needs to be processed by its parent broker before the parent can be

deleted. The parent broker can process this message only while running.

Deleting a stream

Chapter 11. Controlling the broker 109

If you do not quiesce all your applications before deleting the broker, messages

might be sent from other brokers before they receive notification that the broker

has been deleted. Because there is no broker to handle these messages, the queue

manager deals with them according to the report options set for these messages.

This means that publication and registration messages are put to the dead-letter

queue. Therefore, ensure that a dead-letter queue has been set up for this queue

manager before attempting to delete a broker.

Problems when deleting brokers

If you are cannot delete your broker, consider the following:

v Are any queues that are to be quiesced by the broker open to an application or a

channel?

If so, you will receive an error message containing reason code 5840. The error

log contains information about which queues cannot be quiesced.

v Does the broker have any children?

If it does, you will receive an error message containing reason code 5838. The

error log contains information about the broker’s children.

Deleting a broker that has a child broker

If you cannot delete a child of a broker you want to delete (for example, because

the queue manager of the child broker has been deleted) you can use the clrmqbrk

command to clear the broker’s memory of the child broker. Use this command in

exceptional circumstances only, and do so with great care. If it is not used

correctly, brokers will see an inconsistent view of the hierarchy; this is likely to

cause severe disruption to the service.

The command makes it appear as if the child broker has been deleted so that the

parent broker can be deleted. If you use this command, you must remember to

make sure that both ends have the same view of the relationship (see page 114).

Sequence of commands for adding and deleting brokers

This example shows the sequence of commands for adding and deleting brokers in

a network. Queue manager A is to host the parent broker and queue manager B is

to host the child broker. Channels are defined between the two queue managers.

Broker A is the parent broker, so this must be created first. Broker B is then created

as a child broker of broker A. The sequence of commands to achieve this is as

follows:

 Use the following sequence for iSeries:

When both brokers are deleted, broker B must be deleted first, and broker A must

be available for this to happen. Only when broker B has been deleted can broker A

be deleted. The sequence of commands to achieve this is as follows.

START CHANNEL (B.to.A)

START CHANNEL (A.to.B)

strmqbrk -m A

strmqbrk -m B -p A

STRMQMCHL CHLNAME(B.to.A)

STRMQMCHL CHLNAME(A.to.B)

STRMQMBRK MQMNAME(A)

STRMQMBRK MQMNAME(B) PARENTMQM(A)

Deleting a broker from a network

110 WebSphere MQ Publish/Subscribe User’s Guide

Use the following sequence for iSeries:

endmqbrk -m B

STOP CHANNEL (A.to.B)

START CHANNEL (A.to.B)

dltmqbrk -m B

endmqbrk -m A

STOP CHANNEL (B.to.A)

START CHANNEL (B.to.A)

dltmqbrk -m A

ENDMQMBRK MQMNAME(B)

ENDMQMCHL CHLNAME(A.to.B)

STRMQMCHL CHLNAME(A.to.B)

DLTMQMBRK MQMNAME(B)

ENDMQMBRK MQMNAME(A)

ENDMQMCHL CHLNAME(B.to.A)

STRMQMCHL CHLNAME(B.to.A)

DLTMQMBRK MQMNAME(A)

Command sequence

Chapter 11. Controlling the broker 111

112 WebSphere MQ Publish/Subscribe User’s Guide

Chapter 12. Control commands

This chapter describes the commands that you can use to manage your brokers.

Chapter 11, “Controlling the broker,” on page 107 discusses the circumstances

under which you would use these commands. The commands are:

v “clrmqbrk (Clear broker’s memory of a neighboring target broker)” on page 114

v “dltmqbrk (Delete broker)” on page 117

v “dspmqbrk (Display broker status)” on page 119

v “endmqbrk (End broker function)” on page 121

v “migmqbrk (Migrate broker to WebSphere Business Integration Brokers)” on

page 123

v “strmqbrk (Start broker function)” on page 125

You can now use the following commands on iSeries and issue them using the

command line. See chapter 2 ″Managing WebSphere MQ for iSeries using CL

commands″ in the WebSphere MQ for iSeries V6 System Administration Guide for

further information about using the iSeries command line.

v CLRMQMBRK - “clrmqbrk (Clear broker’s memory of a neighboring target

broker)” on page 114

v DLTMQMBRK - “dltmqbrk (Delete broker)” on page 117

v DSPMQMBRK - “dspmqbrk (Display broker status)” on page 119

v ENDMQMBRK - “endmqbrk (End broker function)” on page 121

v STRMQMBRK - “strmqbrk (Start broker function)” on page 125

© Copyright IBM Corp. 1998, 2005 113

clrmqbrk (Clear broker’s memory of a neighboring target broker)

Purpose

Use the clrmqbrk command to clear the broker’s memory of a neighboring (parent

or child) target broker. On iSeries, the command name is CLRMQMBRK. Use this

command in exceptional circumstances only.

The broker cancels all subscriptions from the target broker. The broker must be

stopped when this command is issued. The command is synchronous, and when it

has completed the broker can be restarted normally. No messages are read from

any of the input queues.

After restart, the broker detects any messages on its input queues that came from

this broker, and processes them according to their report options.

You need to clear the memory of the broker at each end of the connection. This

means that you must issue this command (or an equivalent) to both the parent and

the child broker. If you do not clear the memory of the broker at each end of the

connection, one broker continues to send messages to the other broker, which are

processed according to their report options. This might lead to a build-up of

messages on the dead-letter queue, and unnecessary report messages being sent

across the network.

Deleting a broker with dltmqbrk requires first deleting its children. If this is

impractical (for example, if the child broker is no longer reachable) the clrmqbrk

command can be used to make the child broker appear deleted to its parent so that

the parent can be deleted. The child broker must be deleted whenever practical.

You can also use this command at the child with the -p parameter to break the link

with its parent. Using such a pair of clrmqbrk commands, one at the child and one

at the parent, causes the child and its descendants (if any), together with their

publishers and subscribers, to be isolated from the rest of the network. The child

now becomes the root node of a hierarchy. It can operate this way or be restarted

with another parent (or even with its old parent) provided the new parent is not

also a descendant.

Note: This command might mean that publications are not sent to subscribers that

should receive them, even if the publishers or subscribers have registered

with other brokers in the network. When making topology changes such as

this to the broker hierarchy, it is the administrator’s responsibility to ensure

that publishers are quiesced, and not restarted until the effects of the

topology change on the subscription state have propagated through the

broker network.

Syntax

AIX, HP-UX, Linux, Solaris, and Windows

�� clrmqbrk -p

-c ChildQMgrName
 -m QMgrName ��

Required parameters

AIX, HP-UX, Linux, Solaris, and Windows

clrmqbrk

114 WebSphere MQ Publish/Subscribe User’s Guide

-p Specifies that the link is to be broken with the parent broker. If you specify this

parameter, do not specify the -c parameter

-c ChildQMgrName

Specifies that the link is to be broken with a child broker; you also need to

specify the name of the queue manager that hosts the child broker. If you

specify this parameter, do not specify the -p parameter

-m QMgrName

The name of the queue manager hosting the broker whose link is to be broken.

Syntax

iSeries

�� CLRMQMBRK BRKPARENT (*YES)

(*NO)

CHILDMQM(ChildQMgrName)

 MQMNAME(QMgrName) ��

Required parameters

iSeries

BRKPARENT

Specifies whether the link is to be broken with the parent broker. If you specify

this parameter, do not specify the CHILDMQM parameter

(*YES) Breaks the link with the parent broker.

(*NO) Keeps the link with the parent broker.

CHILDMQM(ChildQMgrName)

Specifies that the link is to be broken with a child broker; you also need to

specify the name of the queue manager that hosts the child broker. If you

specify this parameter, do not specify the BRKPARENT parameter

MQMNAME(QMgrName)

The name of the queue manager hosting the broker whose link is to be broken.

Return codes

0 Command completed normally

10 Command completed with unexpected results

20 An error occurred during processing

Examples

In a broker network like this:

 grandparentQM

 |

 parentQM

 |

 childQM

remove the parentQM from the network like this:

1. clrmqbrk -m grandparentQM -c parentQM

breaks the link between the broker on grandparentQM and its child on

parentQM.

2. clrmqbrk -m parentQM -p

breaks the link between the broker on parentQM and its parent.

clrmqbrk

Chapter 12. Control commands 115

3. clrmqbrk -m parentQM -c childQM

breaks the link between the broker on parentQM and its child on childQM.

4. clrmqbrk -m childQM -p

breaks the link between the broker on childQM and its parent.

If the broker on childQM is started by strmqbrk -m childQM -p grandparentQM at

restart, the broker network now looks like this:

 grandparentQM

 |

 childQM

Attention

If you do not issue the clrmqbrk command at both ends of a connection, for

example, by omitting step 3 above, and you try to reconnect the brokers on

parentQM and childQM at restart, reconnection fails with an AMQ5839

message at the parent, an AMQ5822 message at the child, and an AMQ5839

FDC file is generated. If you issue the clrmqbrk command at both ends of the

connection now, it will not fix the problem. You must issue the following

commands, assuming that the parent and child brokers are running with

channels between them:

1. endmqbrk -m childQM

Wait a few seconds for the failed registration message to reach the child.

2. clrmqbrk -m childQM -p

3. strmqbrk -m childQM

Note that there is no parent argument. Wait a few seconds for the failed

registration message to be removed.

4. endmqbrk -m parentQM

5. endmqbrk -m childQM

6. clrmqbrk -m parentQM -c childQM

7. strmqbrk -m parentQM

8. strmqbrk -m childQM -p parentQM

These commands restore the connection between the brokers on parentQM

and childQM and leave the network looking like this:

 parentQM

 |

 childQM

clrmqbrk

116 WebSphere MQ Publish/Subscribe User’s Guide

dltmqbrk (Delete broker)

Purpose

Use the dltmqbrk command to delete the broker. On iSeries, the command name is

DLTMQMBRK. The broker must be stopped when this command is issued, and

the queue manager running. If the broker is already started, you must issue the

endmqbrk before issuing this command. To delete more than one broker in the

hierarchy, it is essential that you stop (using the endmqbrk command) and delete

each broker one at a time. Do not attempt to stop all the brokers in the hierarchy

that you want to delete first and then try to delete them.

The broker must not have children when this command is issued, because they

might be cut off from the rest of the network as a result. If the broker has children

and this command is issued, an error message naming at least one child broker is

received. Delete any children before you delete the broker or, in exceptional

circumstances, before you clear the broker using the clrmqbrk command.

The broker performs the following actions:

1. Put-inhibits its input queues (SYSTEM.BROKER.CONTROL.QUEUE and all

stream queues).

2. Deregisters all its subscribers and publishers.

3. Sends Delete Publication commands to its parent for its metatopics.

4. Deregisters all its subscriptions with the parent.

5. Processes any messages on its input queues according to their report options.

Note: You must have a dead-letter queue, because any input messages are

processed according to their report options. If there is no dead-letter

queue, commands might fail.

6. Deletes internal queues (purging any messages on the queues).

7. Deletes any empty input queues. that were created by the broker in question.

8. Terminates.

If the queue manager terminates before the broker has finished deleting itself (the

finish is indicated by a message to the operator), the operator must issue dltmqbrk

again when the queue manager has been restarted.

Syntax

AIX, HP-UX, Linux, Solaris, and Windows

�� dltmqbrk -m QMgrName ��

Required parameters

AIX, HP-UX, Linux, Solaris, and Windows

-m QMgrName

The name of the queue manager for which the broker function is to be deleted.

dltmqbrk

Chapter 12. Control commands 117

Syntax

iSeries

�� DLTMQMBRK MQMNAME(QMgrName) ��

Required parameters

iSeries

MQMNAME(QMgrName)

The name of the queue manager for which the broker function is to be deleted.

Return codes

0 Command completed normally

10 Command completed with unexpected results

20 An error occurred during processing

Examples

 dltmqbrk -m exampleQM Deletes the broker on exampleQM.

dltmqbrk

118 WebSphere MQ Publish/Subscribe User’s Guide

dspmqbrk (Display broker status)

Purpose

Use the dspmqbrk command to display the status of a broker. On iSeries, the

command name is DSPMQMBRK. The status value returned from this command

can be one of:

v Starting

v Running

v Stopping (immediate shutdown)

v Quiescing (controlled shutdown)

v Not active

v Ended abnormally

Syntax

AIX, HP-UX, Linux, Solaris, and Windows

�� dspmqbrk

-m QMgrName
 ��

Optional parameters

AIX, HP-UX, Linux, Solaris, and Windows

-m QMgrName

The name of the queue manager for which the broker status is to be displayed.

If you do not specify this parameter, the command applies to the default queue

manager.

Syntax

iSeries

�� DSPMQMBRK

MQMNAME(QMgrName)
 ��

Optional parameters

iSeries

MQMNAME(QMgrName)

The name of the queue manager for which the broker status is to be displayed.

If you do not specify this parameter, the command applies to the default queue

manager.

Return codes

0 Command completed normally

10 Command completed with unexpected results

20 An error occurred during processing

Examples

 dspmqbrk Displays information about the broker on the

default queue manager.

dspmqbrk

Chapter 12. Control commands 119

dspmqbrk -m exampleQM Displays information about the broker on

exampleQM.

dspmqbrk

120 WebSphere MQ Publish/Subscribe User’s Guide

endmqbrk (End broker function)

Purpose

Use the endmqbrk command to stop a broker. On iSeries, the command name is

ENDMQMBRK

Control information is retained and registrations for publishers and subscribers

remain in force. Messages are queued by the queue manager until the broker is

restarted using the strmqbrk command.

Syntax

AIX, HP-UX, Linux, Solaris, and Windows

��

endmqbrk
 -c

-i

-m QMgrName

��

Optional parameters

AIX, HP-UX, Linux, Solaris, and Windows

-c Requests a controlled shutdown. This is the default value.

-i Requests an immediate shutdown. The broker does not attempt any further

gets or puts, and backs out any in-flight units-of-work. This might mean that a

nonpersistent input message is published only to a subset of subscribers, or

lost, depending on the broker configuration parameters. (See the description of

SyncPointIfPersistent in “Broker configuration parameters” on page 102.)

-m QMgrName

The name of the queue manager for which the broker function is to be ended.

If you do not specify this parameter, the command is routed to the default

queue manager.

Syntax

iSeries

��

ENDMQMBRK
 OPTION(*CNTRLD)

OPTION(*IMMED)

MQMNAME(QMgrName)

��

Optional parameters

iSeries

OPTION(*CNTRLD)

Requests a controlled shutdown. This is the default value.

OPTION(*IMMED)

Requests an immediate shutdown. The broker does not attempt any further

gets or puts, and backs out any in-flight units-of-work. This might mean that a

nonpersistent input message is published only to a subset of subscribers, or

lost, depending on the broker configuration parameters. (See the description of

SyncPointIfPersistent in “Broker configuration parameters” on page 102.)

endmqbrk

Chapter 12. Control commands 121

MQMNAME(QMgrName)

The name of the queue manager for which the broker function is to be ended.

If you do not specify this parameter, the command is routed to the default

queue manager.

Return codes

0 Command completed normally

10 Command completed with unexpected results

20 An error occurred during processing

Examples

 endmqbrk Stops the broker on the default queue manager

with a controlled shutdown.

endmqbrk -i -m exampleQM Stops the broker on exampleQM immediately.

endmqbrk

122 WebSphere MQ Publish/Subscribe User’s Guide

migmqbrk (Migrate broker to WebSphere Business Integration

Brokers)

Purpose

Use the migmqbrk command to migrate a WebSphere MQ Publish/Subscribe

broker to a WebSphere Business Integration Message Broker broker or a WebSphere

Business Integration Event Broker broker. This command is available only on

platforms that support MQSeries® Integrator Version 2.0 and above. Make sure that

you have applied any necessary CSD or Fix Pack to the WebSphere MQ base

product before running this command. For instructions on applying a CSD or Fix

Pack, see the appropriate Quick Beginnings for your platform.

Read the topics in the “Migrating publish/subscribe applications” of the

WebSphere Business Integration Message Broker or WebSphere Business

Integration Event Broker Help System before deciding to migrate. In particular,

read the “Product differences” topic, which outlines the impact that migration will

have on your current broker network.

Migration exports the following state to a replacement WebSphere Business

Integration Message Broker or WebSphere Business Integration Event Broker

broker. This broker must reside on the same queue manager as the

Publish/Subscribe broker.

Subscriptions

All client subscriptions are exported from all streams except

SYSTEM.BROKER.ADMIN.STREAM

Retained publications

All retained publications in MQRFH format are exported from all streams

except SYSTEM.BROKER.ADMIN.STREAM

Local publishers

Registrations for all publishers that produce local publications are exported

from all streams except SYSTEM.BROKER.ADMIN.STREAM

Related brokers

If the broker is part of a multi-broker hierarchy, details of all its relations

are exported. This includes the names of all streams that the broker to be

migrated has in common with each relation.

The WebSphere Business Integration Message Broker broker or WebSphere

Business Integration Event Broker broker and the WebSphere MQ

Publish/Subscribe broker that it is to replace must have been created on the same

queue manager.

When migration is complete, the Publish/Subscribe broker will be deleted

automatically. Therefore, you are advised to back up the queue manager that hosts

the Publish/Subscribe broker before you start the migration. If migration fails, the

Publish/Subscribe broker remains operational and you can restart it.

Syntax

�� migmqbrk -m QMgrName ��

migmqbrk

Chapter 12. Control commands 123

Optional parameters

-m QMgrName

The name of the queue manager for which the broker function is to be

migrated. This must match the queue manager that hosts the replacement

WebSphere Business Integration Message Broker or WebSphere Business

Integration Event Broker broker.

Return codes

0 Command completed normally

10 Command completed with unexpected results

20 An error occurred during processing

Examples

 migmqbrk -m exampleQM Migrates the broker on exampleQM.

migmqbrk

124 WebSphere MQ Publish/Subscribe User’s Guide

strmqbrk (Start broker function)

Purpose

Use the strmqbrk command to start a broker, either as a restart after an endmqbrk

command (in which case control information is maintained) or initially. On iSeries,

the command name is STRMQMBRK.

On WebSphere MQ for Windows, the strmqbrk command can be added to the

reference command file used when starting a queue manager automatically.

Syntax

AIX, HP-UX, Linux, Solaris, and Windows

�� strmqbrk

-p ParentQMgrName

-m QMgrName
 ��

Optional parameters

AIX, HP-UX, Linux, Solaris, and Windows

-p ParentQMgrName

The name of the queue manager that provides the parent broker function.

 Before you can add a broker to the network, channels in both directions must

exist between the queue manager that hosts the new broker, and the queue

manager that hosts the parent. See “Adding a broker to a network” on page

109 for more details.

 On restart, this parameter is optional. If present, it must be the same as it was

when previously specified. If this is the root-node broker, the queue manager

specified becomes its parent. You cannot specify the name of the parent broker

when you use triggering to start a broker.

 When a parent has been specified, it is possible to change parentage only in

exceptional circumstances in conjunction with the clrmqbrk command.

 By changing a root node to become the child of an existing broker, two

hierarchies can be joined. This propagates subscriptions across the two

hierarchies, which now become one. After that, publications start to flow across

them. To ensure predictable results, it is essential that you quiesce all

publishing applications at this time. If the changed broker detects a hierarchical

error (that is, if the new parent is found also to be a descendant), it

immediately shuts down. The administrator must then use clrmqbrk at both

the changed broker and the new, false parent to restore the previous status.

Note that a hierarchical error is detected by propagating a message up the

hierarchy, which can complete only when the relevant brokers and links are

available.

-m QMgrName

The name of the queue manager for which the broker function is to be started.

If you do not specify this parameter, the command is routed to the default

queue manager.

strmqbrk

Chapter 12. Control commands 125

Syntax

iSeries

�� STRMQMBRK

PARENTMQM(ParentQMgrName)

MQMNAME(QMgrName)
 ��

Optional parameters

iSeries

PARENTMQM (ParentQMgrName)

The name of the queue manager that provides the parent broker function.

 Before you can add a broker to the network, channels in both directions must

exist between the queue manager that hosts the new broker, and the queue

manager that hosts the parent. See “Adding a broker to a network” on page

109 for more details.

 On restart, this parameter is optional. If present, it must be the same as it was

when previously specified. If this is the root-node broker, the queue manager

specified becomes its parent. You cannot specify the name of the parent broker

when you use triggering to start a broker.

 When a parent has been specified, it is possible to change parentage only in

exceptional circumstances in conjunction with the clrmqbrk command.

 By changing a root node to become the child of an existing broker, two

hierarchies can be joined. This propagates subscriptions across the two

hierarchies, which now become one. After that, publications start to flow across

them. To ensure predictable results, it is essential that you quiesce all

publishing applications at this time. If the changed broker detects a hierarchical

error (that is, if the new parent is found also to be a descendant), it

immediately shuts down. The administrator must then use clrmqbrk at both

the changed broker and the new, false parent to restore the previous status.

Note that a hierarchical error is detected by propagating a message up the

hierarchy, which can complete only when the relevant brokers and links are

available.

MQMNAME(QMgrName)

The name of the queue manager for which the broker function is to be started.

If you do not specify this parameter, the command is routed to the default

queue manager.

Return codes

0 Command completed normally

10 Command completed with unexpected results

20 An error occurred during processing

Examples

 strmqbrk -p parentQM Starts the broker on the default queue manager

specifying that it is a child of the broker on

parentQM.

strmqbrk -m exampleQM Starts the broker on exampleQM.

strmqbrk

126 WebSphere MQ Publish/Subscribe User’s Guide

You can use the runmqbrk command to run the broker synchronously in the

foreground. runmqbrk takes the same parameters as strmqbrk.

strmqbrk

Chapter 12. Control commands 127

strmqbrk

128 WebSphere MQ Publish/Subscribe User’s Guide

Chapter 13. Message broker exit

An exit can be configured at the broker to customize publications. This exit can be

used, for example, to cause traffic for different streams to be sent along different

channels.

The exit is invoked after the broker has decided to send a publication to a

particular broker or subscriber, and the exit can modify the publication and

message descriptor. Do not change the message descriptor for a publication that is

being sent between brokers.

Exits are configured in the queue manager configuration file, qm.ini or in the

Broker page of the queue manager properties in WebSphere MQ Explorer

(described in “Broker configuration stanza” on page 102).

The following topics are discussed in this chapter:

v “Publish/subscribe routing exit”

v “Writing a publish/subscribe routing exit program” on page 136

v “Compiling a publish/subscribe routing exit program” on page 137

v “Sample routing exit” on page 137

Publish/subscribe routing exit

 This call definition describes the parameters that are passed to the

publish/subscribe routing exit called by the publish/subscribe broker.

Note: No entry point called MQ_PUBSUB_ROUTING_EXIT is actually provided

by the broker. This is because the name of the publish/subscribe routing exit

is defined by the RoutingExitPath parameter in the Broker stanza of the queue

manager’s initialization file qm.ini. You can also update this parameter in

the Broker page of the queue manager properties in WebSphere MQ

Explorer

Parameters

ExitParms (MQPXP) – input/output

Exit parameter block.

 This structure contains information relating to the invocation of the exit. The

exit sets information in this structure to indicate the destination to which the

message should be sent.

Usage notes

1. The function performed by the publish/subscribe routing exit is defined by the

provider of the exit. The exit, however, must conform to the rules defined in

the associated control block MQPXP.

2. No entry point called MQ_PUBSUB_ROUTING_EXIT is actually provided by

the publish/subscribe broker. However, a typedef is provided for the name

MQ_PUBSUB_ROUTING_EXIT (ExitParms)

© Copyright IBM Corp. 1998, 2005 129

MQ_PUBSUB_ROUTING_EXIT in the C programming language, and this can

be used to declare the user-written exit, to ensure that the parameters are

correct. The following example illustrates how this can be used:

#include "cmqc.h"

#include "cmqxc.h"

MQ_PUBSUB_ROUTING_EXIT MyRoutingExit;

void MQENTRY MyRoutingExit(PMQPXP pExitParms)

{

 /* C language statements to perform the function of the exit */

}

C invocation

exitname (&ExitParms);

Declare the parameters as follows:

MQPXP ExitParms; /* Exit parameter block */

Publish/subscribe routing exit parameter structure

The following table summarizes the fields in the structure.

 Table 6. Fields in MQPXP

Field Description Page

DestinationQMgrName Name of destination queue manager 131

DestinationQName Name of destination queue 131

DestinationType Type of destination 131

ExitData Exit data 131

ExitId Type of exit 131

ExitNumber Exit number 132

ExitReason Reason for invoking exit 132

ExitResponse Response from exit 132

ExitResponse2 Reserved field 133

ExitUserArea Exit user area 133

Feedback Feedback code 133

HeaderLength Reserved field 134

MsgDescPtr Address of message descriptor (MQMD) 134

MsgInLength Length of input message 134

MsgInPtr Address of input message 134

MsgOutLength Length of output message 134

MsgOutPtr Address of output message 134

QMgrName Name of local queue manager 135

StreamName Name of stream 135

StrucId Structure identifier 135

Version Structure version number 135

Publish/subscribe routing exit

130 WebSphere MQ Publish/Subscribe User’s Guide

The MQPXP structure describes the information that is passed to the

publish/subscribe routing exit. The exit is invoked each time a broker sends a

publication to a subscriber or to another broker. The exit is also invoked when a

stream is initialized or terminated.

This structure is supported in the following environments: AIX, HP-UX, Linux,

Solaris, and Windows.

Fields

DestinationQMgrName (MQCHAR48)

Name of destination queue manager.

 This is the name of the queue manager to which the message is being sent. The

name is padded with blanks to the full length of the field. The name can be

altered by the exit.

 The length of this field is given by MQ_Q_MGR_NAME_LENGTH. This is an

input/output field to the exit.

DestinationQName (MQCHAR48)

Name of destination queue.

 This is the name of the queue to which the message is being sent. The name is

padded with blanks to the full length of the field. The name can be altered by

the exit.

 The length of this field is given by MQ_Q_NAME_LENGTH. This is an

input/output field to the exit.

DestinationType (MQLONG)

Type of destination for message.

 This is the type of the destination to which the message is being sent. It is one

of the following:

MQDT_APPL

Application.

MQDT_BROKER

Broker.

 This is an input field to the exit.

ExitData (MQCHAR32)

Exit data.

 This is the fixed exit data defined by the RoutingExitData parameter of the

Broker stanza in the queue manager’s initialization file. The data is padded

with blanks to the full length of the field. If there is no fixed exit data defined

in the initialization file, this field is completely blank.

 The length of this field is given by MQ_EXIT_DATA_LENGTH. This is an

input field to the exit.

ExitId (MQLONG)

Type of exit.

 This indicates the type of exit being called. The value is:

MQXT_PUBSUB_ROUTING_EXIT

Publish/subscribe routing exit.

 This is an input field to the exit.

Publish/subscribe routing exit

Chapter 13. Message broker exit 131

ExitNumber (MQLONG)

Exit number.

 This is the sequence number of the exit. The value is one.

 This is an input field to the exit.

ExitReason (MQLONG)

Reason for invoking exit.

 This indicates the reason why the exit is being called. Possible values are:

MQXR_INIT

Exit initialization.

 This indicates that the exit for the stream identified by the StreamName

field is being invoked for the first time. It allows the exit to acquire

and initialize any resources that it might need (for example: main

storage).

MQXR_TERM

Exit termination.

 This indicates that the exit for the stream identified by the StreamName

field is about to be terminated. The exit should free any resources that

it has acquired since it was initialized (for example: main storage).

MQXR_MSG

Process a message.

 This indicates that the exit is being invoked to process a message.

 This is an input field to the exit.

ExitResponse (MQLONG)

Response from exit.

 This is set by the exit to indicate how processing should continue. It must be

one of the following:

MQXCC_OK

Continue normally.

 This indicates that processing should continue normally. It is valid for

all values of ExitReason.

 When ExitReason has the value MQXR_MSG, DestinationQName and

DestinationQMgrName identify the destination to which the message

should be sent.

MQXCC_SUPPRESS_FUNCTION

Suppress function.

 This indicates that the normal processing of the message should be

discontinued. It is valid only when ExitReason has the value

MQXR_MSG.

 The processing performed on the message is determined by the

MQRO_DISCARD_MSG option in the Report field of the message

descriptor of the message:

v If the exit specifies MQRO_DISCARD_MSG, the message is

discarded.

v If the exit does not specify MQRO_DISCARD_MSG, the message is

placed on the dead-letter queue (undelivered-message queue). If

Publish/subscribe routing exit

132 WebSphere MQ Publish/Subscribe User’s Guide

there is no dead-letter queue, or the message cannot be placed

successfully on the dead-letter queue:

– The message is discarded if the Persistence field in the message

descriptor has the value MQPER_NOT_PERSISTENT and the

DiscardNonPersistentPublication parameter in the queue manager’s

initialization file has the value yes.

– In all other cases, the message is retried intermittently.

MQXCC_SUPPRESS_EXIT

Suppress exit.

 This indicates that the exit should not be invoked again until

termination of the stream. It is valid only when ExitReason has the

value MQXR_INIT or MQXR_MSG.

 The broker processes subsequent messages as if no publish/subscribe

routing exit were defined. Processing of the current message (if there is

one) continues normally; DestinationQName and DestinationQMgrName

identify the destination to which the current message should be sent.

 If any other value is returned by the exit, the broker processes the message as

if MQXCC_OK had been specified.

 This is an output field from the exit.

ExitResponse2 (MQLONG)

Reserved.

 This is a reserved field. The value is zero.

ExitUserArea (MQBYTE16)

Exit user area.

 This is a field that is available for the exit to use. It is initialized to

MQXUA_NONE (binary zero) on the first invocation of the exit for the stream,

and thereafter any changes made to this field by the exit are preserved across

invocations of the exit. The first invocation of the exit is indicated by the

ExitReason field having the value MQXR_INIT. There is a separate

ExitUserArea for each stream.

 The following value is defined:

MQXUA_NONE

No user information.

 The value is binary zero for the length of the field.

 For the C programming language, the constant

MQXUA_NONE_ARRAY is also defined; this has the same value as

MQXUA_NONE, but is an array of characters instead of a string.

 The length of this field is given by MQ_EXIT_USER_AREA_LENGTH. This is

an input/output field to the exit.

Feedback (MQLONG)

Feedback code.

 This is the feedback code to be used if the exit returns

MQXCC_SUPPRESS_FUNCTION in the ExitResponse field.

Publish/subscribe routing exit

Chapter 13. Message broker exit 133

On input to the exit, this field always has the value MQFB_NONE. If the exit

decides to return MQXCC_SUPPRESS_FUNCTION, the exit should set

Feedback to the value to be used for the message when the broker places it on

the dead-letter queue.

 If MQXCC_SUPPRESS_FUNCTION is returned by the exit, but Feedback still

has the value MQFB_NONE, the following feedback code is used:

MQFB_STOPPED_BY_PUBSUB_EXIT

Message stopped by publish/subscribe routing exit.

 This is an input/output field to the exit.

HeaderLength (MQLONG)

Reserved.

 This is a reserved field. The value is zero.

 This is an input field to the exit.

MsgDescPtr (PMQMD)

Address of message descriptor.

 This is the address of the message descriptor (MQMD) of the message being

processed. The exit can change the contents of the message descriptor, so use it

with care. In particular:

v If DestinationType has the value MQDT_BROKER, the CorrelId field in the

message descriptor must not be changed.

 No message descriptor is passed to the exit if ExitReason is MQXR_INIT or

MQXR_TERM; in these cases, MsgDescPtr is the null pointer.

 This is an input field to the exit.

MsgInLength (MQLONG)

Length of input message data.

 This is the length in bytes of the message data passed to the exit. The address

of the data is given by MsgInPtr.

 This is an input field to the exit.

MsgInPtr (PMQVOID)

Address of input message data.

 This is the address of a buffer containing the message data that is input to the

exit. The contents of this buffer can be modified by the exit; see MsgOutPtr.

 This is an input field to the exit.

MsgOutLength (MQLONG)

Length of output message data.

 This is the length in bytes of the message data returned by the exit. On input

to the exit, this field is always zero. On output from the exit, this field is

ignored if MsgOutPtr is the null pointer. See the description of the MsgOutPtr

field for information about modifying the message data.

 This is an input/output field to the exit.

MsgOutPtr (PMQVOID)

Address of output message data.

 This is the address of a buffer containing the message data that is output from

the exit. On input to the exit, this field is always the null pointer. On output

Publish/subscribe routing exit

134 WebSphere MQ Publish/Subscribe User’s Guide

from the exit, if the value is still the null pointer, the broker sends the message

specified by MsgInPtr, with the length given by MsgInLength.

 If the exit needs to modify the message data, use one of the following

procedures:

v If the length of the data does not change, the data can be modified in the

buffer addressed by MsgInPtr. In this case, do not change MsgOutPtr and

MsgOutLength.

v If the modified data is shorter than the original data, the data can be

modified in the buffer addressed by MsgInPtr. In this case MsgOutPtr must

be set to the address of the input message buffer, and MsgOutLength set to

the new length of the message data.

v If the modified data is (or might be) longer than the original data, the exit

must obtain a buffer of the required size and copy the modified data into it.

In this case MsgOutPtr must be set to the address of the new buffer, and

MsgOutLength set to the new length of the message data. The exit is

responsible for freeing the buffer on a subsequent invocation of the exit.

Note: Because MsgOutPtr is always the null pointer on input to the exit, the

exit must save the address of the buffer it obtains, either in

ExitUserArea, or in a control block whose address is saved in

ExitUserArea.

 This is an input/output field to the exit.

QMgrName (MQCHAR48)

Name of local queue manager.

 This is the name of the local queue manager. The name is padded with blanks

to the full length of the field.

 The length of this field is given by MQ_Q_MGR_NAME_LENGTH. This is an

input field to the exit.

StreamName (MQCHAR48)

Name of stream.

 This is the name of the stream to which the message belongs. The name is

padded with blanks to the full length of the field.

 The length of this field is given by MQ_OBJECT_NAME_LENGTH. This is an

input field to the exit.

StrucId (MQCHAR4)

Structure identifier.

 Possible values are:

MQPXP_STRUC_ID

Identifier for publish/subscribe routing-exit parameter structure.

 For the C programming language, the constant

MQPXP_STRUC_ID_ARRAY is also defined; this has the same value as

MQPXP_STRUC_ID, but is an array of characters instead of a string.

 This is an input field to the exit.

Version (MQLONG)

Structure version number.

 The value is:

Publish/subscribe routing exit

Chapter 13. Message broker exit 135

MQPXP_VERSION_1

Version-1 publish/subscribe routing-exit parameter structure.

 MQPXP_CURRENT_VERSION

Current version of publish/subscribe routing-exit parameter structure.

 This is an input field to the exit.

C declaration

typedef struct tagMQPXP {

 MQCHAR4 StrucId; /* Structure identifier */

 MQLONG Version; /* Structure version number */

 MQLONG ExitId; /* Type of exit */

 MQLONG ExitReason; /* Reason for invoking exit */

 MQLONG ExitResponse; /* Response from exit */

 MQLONG ExitResponse2; /* Reserved */

 MQLONG Feedback; /* Feedback code */

 MQLONG ExitNumber; /* Exit number */

 MQBYTE16 ExitUserArea; /* Exit user area */

 MQCHAR32 ExitData; /* Exit data */

 MQLONG HeaderLength; /* Reserved */

 MQLONG MsgInLength; /* Length of input message data */

 MQLONG MsgOutLength; /* Length of output message data */

 MQLONG DestinationType; /* Type of destination for message */

 PMQMD MsgDescPtr; /* Address of message descriptor */

 PMQVOID MsgInPtr; /* Address of input message data */

 PMQVOID MsgOutPtr; /* Address of output message data */

 MQCHAR48 StreamName; /* Name of stream */

 MQCHAR48 QMgrName; /* Name of local queue manager */

 MQCHAR48 DestinationQName; /* Name of destination queue */

 MQCHAR48 DestinationQMgrName; /* Name of destination queue

 manager */

 } MQPXP;

Writing a publish/subscribe routing exit program

The WebSphere MQ Publish/Subscribe routing exit is a stream related exit; the

parameters (for example, ExitUserArea) passed to the exit have the scope of a

stream.

The broker uses two threads for each stream and the exit can be invoked under

either thread. The broker does not call the exit for a single stream under two

threads concurrently (that is, the exit does not need to serialize access to the

ExitUserArea or other stream related data).

If the exit uses thread related resources (for example, a connection handle or queue

handle) the exit must manage these resources on a thread basis. The connection

handle obtained by a thread is not usable by any other thread. The exit can use

operating system thread services such as pthread_set_specific and

pthread_get_specific on Unix, or TlsSetValue and TlsGetValue on Windows to

manage thread related resources.

The routing exit is called before a broker sends a publication to a subscriber or

another broker. It is also called at initialization and termination of a stream.

Limitations on WebSphere MQ work done in the routing exit

When writing routing exit programs, be aware of the following restrictions on MQI

calls:

v Do not issue MQDISC.

Publish/subscribe routing exit

136 WebSphere MQ Publish/Subscribe User’s Guide

v Do not issue MQCMIT or MQBACK within the exit:

– If you are using SyncPointIfPersistent=yes (described in “Broker

configuration stanza” on page 102), do not take recoverable action within the

exit when processing nonpersistent messages.

– If you are using SyncPointIfPersistent=no, or persistent messages, the exit is

invoked within the scope of the publication unit of work.

Security considerations

If the routing exit changes the destination queue or queue manager name, by

default no new authority check is carried out.

Compiling a publish/subscribe routing exit program

The routing exit is a dynamically loaded library; it can be thought of as a

channel-exit. For information on writing and compiling channel-exit programs see

WebSphere MQ Intercommunication.

Sample routing exit

A sample routing exit program is provided with WebSphere MQ Publish/Subscribe

(see Chapter 9, “Sample programs,” on page 91). The exit sample is invoked using

the RoutingExitPath in the Broker stanza of queue manager initialization file (see

“Broker configuration stanza” on page 102).

The sample program changes either the destination queue or queue manager,

depending upon the parameters supplied, as follows:

v If the destination of the message is an application, and the stream name is the

default stream:

– If the destination queue name is Q1, change it to Q2

– If the destination queue name is Q2, change it to Q3

– If the destination queue name is Q3, change it to Q4
v If the destination of the message is a broker, and the stream name is

MY.ROUTING.STREAM:

– If the destination queue manager is queue manager 1, change it to queue

manager 2.

– If the destination queue manager is queue manager 2, change it to queue

manager 3.

– If the destination queue manager is queue manager 3, change it to queue

manager 4.

Routing exit program

Chapter 13. Message broker exit 137

Sample routing exit

138 WebSphere MQ Publish/Subscribe User’s Guide

Part 4. System programming

Chapter 14. Writing system management

applications 141

Format of broker administration messages 141

Subscription deregistered message 142

Stream deleted message 142

Broker deleted message 142

Stream support messages 143

Children messages 143

Parent messages 143

MQCFH - PCF header 143

Reason codes returned from publish/subscribe

messages 145

PCF Command Messages 146

Delete Publication 147

Deregister Publisher 147

Deregister Subscriber 147

Publish 148

Register Publisher 148

Register Subscriber 149

Request Update 150

Chapter 15. Finding out about other publishers

and subscribers 151

Metatopics 151

Subscribing to metatopics 152

Using wild cards 153

Example requests 153

Authorized metatopics 153

Finding out about brokers 154

Message format for metatopics 154

Parameters 155

Sample program for administration information 157

Operation 158

Example of metatopic information 159

© Copyright IBM Corp. 1998, 2005 139

140 WebSphere MQ Publish/Subscribe User’s Guide

Chapter 14. Writing system management applications

Brokers communicate with their neighbors in the hierarchy to establish the

topology, and to inform their neighbors about the streams they support. They do

this by publishing broker administration messages, as retained messages, using the

WebSphere MQ Programmable Command Format (PCF).

Note that the format of administration information (including metatopics) might

be changed in future products.

A PCF message starts with an MQCFH structure, which includes a definition of the

type of command the message represents. This is followed by a succession of

MQCFIN (integer parameter) and MQCFST (string parameter) structures. The PCF

format is described in WebSphere MQ Programmable Command Formats and

Administration Interface. The WebSphere MQ administration interface (MQAI) has

been provided to help you write PCF applications. It is also described in WebSphere

MQ Programmable Command Formats and Administration Interface.

The SYSTEM.BROKER.ADMIN.STREAM queue is used for broker administration

messages. System management applications can subscribe to these messages,

provided that they have the correct security authorization. Subscription requests

for these topics are sent to the SYSTEM.BROKER.CONTROL.QUEUE in the normal

way.

Topics starting ‘MQ/’ are reserved for WebSphere MQ use, but other topics can be

defined. The broker passes these publications to subscribers in the same way as for

other streams.

Brokers publish on the ‘MQ/QMgrName/Children’ and ‘MQ/QMgrName/Parent’ topics

if applicable. This enables applications to build a view of the broker topology.

The ‘MQ/QMgrName/StreamSupport’ topic is published on by all brokers. This

enables applications to build a view of the stream topology in relation to the

broker topology.

Brokers also publish messages to this queue when a stream or broker has been

deleted, and when a subscription has been deregistered by the broker because it is

no longer valid.

This chapter discusses the following topics:

v “Format of broker administration messages”

v “MQCFH - PCF header” on page 143

v “PCF Command Messages” on page 146

Metatopics are published on the stream to which they relate so the relevant ones

are published on SYSTEM.BROKER.ADMIN.STREAM. For information about

metatopics see “Metatopics” on page 151.

Format of broker administration messages

The broker sends administration messages as Publish messages in PCF format. The

following parameters are always present:

© Copyright IBM Corp. 1998, 2005 141

PublicationOptions (MQCFIN)

MQPUBO_RETAIN_PUBLICATION is set if the publication is retained.

StreamName (MQCFST)

Set to the reserved stream name ‘SYSTEM.BROKER.ADMIN.STREAM’.

Topic (MQCFST)

This is one of the following:

v ‘MQ/QMgrName/Event/SubscriptionDeregistered’

v ‘MQ/QMgrName/Event/StreamDeleted’

v ‘MQ/QMgrName/Event/BrokerDeleted’

v ‘MQ/QMgrName/StreamSupport’

v ‘MQ/QMgrName/Children’

v ‘MQ/QMgrName/Parent’

where QMgrName is the queue manager name of the broker sending the message

(this is 48 characters long, padded with blanks if necessary).

PublishTimestamp (MQCFST)

Set to the time of publication (Universal time).

Subscription deregistered message

An ‘MQ/QMgrName/Event/SubscriptionDeregistered’ message is published when a

subscription is deregistered by the broker because it has become invalid (for

example, it is no longer authorized).

For ‘MQ/QMgrName/Event/SubscriptionDeregistered’ messages, the following

group of parameters is published to identify the subscription that has been

removed by the broker:

v RegistrationStreamName

v RegistrationTopic

v RegistrationQMgrName

v RegistrationQName

v RegistrationCorrelId (if applicable)

v RegistrationUserIdentifier

v RegistrationRegistrationOptions

These additional parameters are described in “Message format for metatopics” on

page 154.

Stream deleted message

An ‘MQ/QMgrName/Event/StreamDeleted’ message is published when a stream is

deleted. The following additional parameter is present:

RegistrationStreamName (MQCFST)

Name of deleted stream (parameter identifier:

MQCACF_REG_STREAM_NAME).

Broker deleted message

When a broker is deleted with the dltmqbrk command, it publishes an

‘MQ/QMgrName/Event/BrokerDeleted’ message.

The administrator is advised to stop affected application programs before making

changes to broker network and stream topology. However, a program could be

written to subscribe to these administrative event topics and take appropriate

action. In the case of the BrokerDeleted event, such a program cannot rely on this

Broker administration messages

142 WebSphere MQ Publish/Subscribe User’s Guide

message being propagated to the parent, but the program will receive the message

if it has subscribed to this topic at the affected broker.

Stream support messages

An ‘MQ/QMgrName/StreamSupport’ message (a retained publication) gives

information about which streams the broker supports. The following parameter is

repeated for each stream supported:

SupportedStreamName (MQCFST)

Name of supported stream (parameter identifier:

MQCACF_SUPPORTED_STREAM_NAME).

Children messages

An ‘MQ/QMgrName/Children’ message (a retained publication) gives information

about a broker’s children. It is published only by those brokers that have children.

The following parameter is repeated for each child:

QMgrName (MQCFST)

Queue manager name of child broker (parameter identifier:

MQCACF_CHILD_Q_MGR_NAME).

 This list gives all the broker’s immediate children in the hierarchy.

Parent messages

An ‘MQ/QMgrName/Parent’ message (a retained publication) gives information

about a broker’s parent. It is published only by those brokers that have a parent.

The following parameter occurs once:

QMgrName (MQCFST)

Queue manager name of parent broker (parameter identifier:

MQCACF_PARENT_Q_MGR_NAME).

MQCFH - PCF header

Each message or response in PCF format starts with an MQCFH structure. The

field contents of the MQCFH structure for WebSphere MQ Publish/Subscribe are

as follows:

Type (MQLONG)

Structure type.

 The following values are valid:

MQCFT_COMMAND

Command message (for example, Publish, Register Subscribers).

MQCFT_RESPONSE

Message is a response to a command.

StrucLength (MQLONG)

Structure length. The value must be MQCFH_STRUC_LENGTH.

Version (MQLONG)

Structure version number. The value must be MQCFH_VERSION_1.

Command (MQLONG)

Command identifier.

Broker administration messages

Chapter 14. Writing system management applications 143

For a command message, this identifies the function to be performed. For a

response message, it identifies the command to which this is the reply. The

following values are valid:

MQCMD_DELETE_PUBLICATION

Delete Publication

MQCMD_DEREGISTER_PUBLISHER

Deregister Publisher

MQCMD_DEREGISTER_SUBSCRIBER

Deregister Subscriber

MQCMD_PUBLISH

Publish

MQCMD_REGISTER_PUBLISHER

Register Publisher

MQCMD_REGISTER_SUBSCRIBER

Register Subscriber

MQCMD_REQUEST_UPDATE

Request Update

MQCMD_BROKER_INTERNAL

Used internally by brokers

MsgSeqNumber (MQLONG)

Message sequence number. The value must be 1 for WebSphere MQ

Publish/Subscribe messages and responses.

Control (MQLONG)

Control options.

 The value must be MQCFC_LAST for WebSphere MQ Publish/Subscribe

messages and responses.

CompCode (MQLONG)

Completion code.

 This field is meaningful only for a response; its value is not significant for a

command. The following values are possible:

MQCC_OK

Command completed successfully.

MQCC_WARNING

Command completed with warning.

MQCC_FAILED

Command failed.

Reason (MQLONG)

Reason code qualifying completion code.

 This field is meaningful only for a response; its value is not significant for a

command.

 The reason codes that might be returned in response to a command are listed

in “Reason codes returned from publish/subscribe messages” on page 145.

ParameterCount (MQLONG)

Count of parameter structures (MQCFIN, MQCFST) following.

 The value of this field is zero or greater.

PCF header

144 WebSphere MQ Publish/Subscribe User’s Guide

Reason codes returned from publish/subscribe messages

The following reason codes can be returned by a broker in response to any

command message in PCF format. They are described in WebSphere MQ

Programmable Command Formats and Administration Interface.

MQRCCF_CFH_COMMAND_ERROR

Command identifier not valid.

MQRCCF_CFH_CONTROL_ERROR

Control option not valid.

MQRCCF_CFH_LENGTH_ERROR

Structure length not valid.

MQRCCF_CFH_MSG_SEQ_NUMBER_ERROR

Message sequence number not valid.

MQRCCF_CFH_PARM_COUNT_ERROR

Parameter count not valid.

MQRCCF_CFH_TYPE_ERROR

Type not valid.

MQRCCF_CFH_VERSION_ERROR

Structure version number not valid.

MQRCCF_CFIN_DUPLICATE_PARM

Duplicate MQCFIN parameter.

MQRCCF_CFIN_LENGTH_ERROR

MQCFIN structure length not valid.

MQRCCF_CFIN_PARM_ID_ERROR

Parameter identifier not valid.

MQRCCF_CFST_DUPLICATE_PARM

Duplicate MQCFST parameter.

MQRCCF_CFST_LENGTH_ERROR

MQCFST structure length not valid.

MQRCCF_CFST_PARM_ID_ERROR

Parameter identifier not valid.

MQRCCF_CFST_STRING_LENGTH_ERR

MQCFST string length not valid.

MQRCCF_COMMAND_FAILED

Command failed.

MQRCCF_ENCODING_ERROR

Encoding error.

MQRCCF_INCORRECT_Q

Command sent to wrong broker queue.

MQRCCF_MD_FORMAT_ERROR

Format not valid.

MQRCCF_MSG_LENGTH_ERROR

Message length not valid.

MQRCCF_PARM_COUNT_TOO_SMALL

Mandatory parameter for command missing.

PCF header

Chapter 14. Writing system management applications 145

MQRCCF_STRUCTURE_TYPE_ERROR

Structure type invalid.

The following reason codes might be returned by a broker in response to a

command message in PCF format, depending on the parameters used in that

message. They are described in WebSphere MQ Messages.

MQRCCF_CORREL_ID_ERROR

Correlation identifier used as part of identity but is all binary zero.

MQRCCF_DEL_OPTIONS_ERROR

Invalid delete options supplied.

MQRCCF_DUPLICATE_IDENTITY

Publisher or subscriber identity already assigned to another user ID.

MQRCCF_INCORRECT_STREAM

Stream name different from queue name.

MQRCCF_NO_RETAINED_MSG

No retained message exists for this topic.

MQRCCF_NOT_AUTHORIZED

Subscriber not authorized to browse broker’s stream queue or subscriber

queue.

MQRCCF_NOT_REGISTERED

Publisher or subscriber not registered.

MQRCCF_PUB_OPTIONS_ERROR

Invalid publication options supplied.

MQRCCF_Q_MGR_NAME_ERROR

Queue manager name invalid.

MQRCCF_Q_NAME_ERROR

Queue name invalid.

MQRCCF_REG_OPTIONS_ERROR

Invalid registration options supplied.

MQRCCF_STREAM_ERROR

Stream name too long or contains invalid characters.

MQRCCF_TOPIC_ERROR

Topic name has an invalid length or contains invalid characters.

MQRCCF_UNKNOWN_STREAM

Stream not defined to broker and cannot be created.

PCF Command Messages

This section lists the parameters and options that are relevant for each command

message in PCF format. Parameter identifiers and types (MQCFIN or MQCFST) are

shown. Broker administration and metatopic messages use the PCF format.

The usage of each parameter and option is the same as for the corresponding

command messages in RFH format, which are described in Chapter 7,

“Publish/Subscribe command messages,” on page 57. In principle, publishers and

subscribers could send command messages to a broker in PCF format but this is

not recommended. Use the RFH format for command messages to ensure

interoperability with other WebSphere business integration functions.

PCF header

146 WebSphere MQ Publish/Subscribe User’s Guide

Delete Publication

Topic (MQCFST)

Topic (parameter identifier: MQCACF_TOPIC).

DeleteOptions (MQCFIN)

Delete options (parameter identifier: MQIACF_DELETE_OPTIONS).

 The following option can be set:

 MQDELO_LOCAL

StreamName (MQCFST)

Stream name (parameter identifier: MQCACF_STREAM_NAME).

Deregister Publisher

RegistrationOptions (MQCFIN)

Registration options (parameter identifier:

MQIACF_REGISTRATION_OPTIONS).

 The following options can be set:

 MQREGO_DEREGISTER_ALL

 MQREGO_CORREL_ID_AS_IDENTITY

StreamName (MQCFST)

Stream name (parameter identifier: MQCACF_STREAM_NAME).

Topic (MQCFST)

Topic (parameter identifier: MQCACF_TOPIC).

QMgrName (MQCFST)

Publisher’s queue manager name (parameter identifier:

MQCA_Q_MGR_NAME).

QName (MQCFST)

Publisher’s queue name (parameter identifier: MQCA_Q_NAME).

Deregister Subscriber

RegistrationOptions (MQCFIN)

Registration options (parameter identifier:

MQIACF_REGISTRATION_OPTIONS).

 The following options can be set:

 MQREGO_DEREGISTER_ALL

 MQREGO_CORREL_ID_AS_IDENTITY

 MQREGO_LEAVE_ONLY

 MQREGO_VARIABLE_USER_ID

 MQREGO_FULL_RESPONSE

SubName (MQCFST)

Subscription name (parameter identifier: MQCACF_SUBSCRIPTION_NAME).

SubIdentity (MQCFST)

Subscription identity (parameter identifier:

MQCACF_SUBSCRIPTION_IDENTITY).

StreamName (MQCFST)

Stream name (parameter identifier: MQCACF_STREAM_NAME).

Topic (MQCFST)

Topic (parameter identifier: MQCACF_TOPIC).

PCF Command Messages

Chapter 14. Writing system management applications 147

QMgrName (MQCFST)

Subscriber’s queue manager name (parameter identifier:

MQCA_Q_MGR_NAME).

QName (MQCFST)

Subscriber’s queue name (parameter identifier: MQCA_Q_NAME).

Publish

Topic (MQCFST)

Topic (parameter identifier: MQCACF_TOPIC).

RegistrationOptions (MQCFIN)

Registration options (parameter identifier:

MQIACF_REGISTRATION_OPTIONS).

 The following options can be set:

 MQREGO_ANONYMOUS

 MQREGO_LOCAL

 MQREGO_DIRECT_REQUESTS

 MQREGO_CORREL_ID_AS_IDENTITY

PublicationOptions (MQCFIN)

Publication options (parameter identifier: MQIACF_PUBLICATION_OPTIONS).

 The following options can be set:

 MQPUBO_NO_REGISTRATION

 MQPUBO_RETAIN_PUBLICATION

 MQPUBO_IS_RETAINED_PUBLICATION

 MQPUBO_OTHER_SUBSCRIBERS_ONLY

 MQPUBO_CORREL_ID_AS_IDENTITY

StreamName (MQCFST)

Stream name (parameter identifier: MQCACF_STREAM_NAME).

QMgrName (MQCFST)

Publisher’s queue manager name (parameter identifier:

MQCA_Q_MGR_NAME).

QName (MQCFST)

Publisher’s queue name (parameter identifier: MQCA_Q_NAME).

PublishTimestamp (MQCFST)

Publication timestamp (parameter identifier:

MQCACF_PUBLISH_TIMESTAMP).

SequenceNumber (MQCFIN)

Publication sequence number (parameter identifier:

MQIACF_SEQUENCE_NUMBER).

StringData (MQCFST)

String publication data (parameter identifier: MQCACF_STRING_DATA).

IntegerData (MQCFIN)

Integer publication data (parameter identifier: MQIACF_INTEGER_DATA).

Register Publisher

Topic (MQCFST)

Topic (parameter identifier: MQCACF_TOPIC).

PCF Command Messages

148 WebSphere MQ Publish/Subscribe User’s Guide

RegistrationOptions (MQCFIN)

Registration options (parameter identifier:

MQIACF_REGISTRATION_OPTIONS).

 The following options can be set:

 MQREGO_ANONYMOUS

 MQREGO_LOCAL

 MQREGO_DIRECT_REQUESTS

 MQREGO_CORREL_ID_AS_IDENTITY

StreamName (MQCFST)

Stream name (parameter identifier: MQCACF_STREAM_NAME).

QMgrName (MQCFST)

Publisher’s queue manager name (parameter identifier:

MQCA_Q_MGR_NAME).

QName (MQCFST)

Publisher’s queue name (parameter identifier: MQCA_Q_NAME).

Register Subscriber

Topic (MQCFST)

Topic (parameter identifier: MQCACF_TOPIC).

RegistrationOptions (MQCFIN)

Registration options (parameter identifier:

MQIACF_REGISTRATION_OPTIONS).

 The following options can be set:

 MQREGO_ANONYMOUS

 MQREGO_LOCAL

 MQREGO_NEW_PUBLICATIONS_ONLY

 MQREGO_PUBLISH_ON_REQUEST_ONLY

 MQREGO_CORREL_ID_AS_IDENTITY

 MQREGO_INCLUDE_STREAM_NAME

 MQREGO_INFORM_IF_RETAINED

 MQREGO_DUPLICATES_OK

 MQREGO_NON_PERSISTENT

 MQREGO_PERSISTENT

 MQREGO_PERSISTENT_AS_PUBLISH

 MQREGO_PERSISTENT_AS_Q

 MQREGO_ADD_NAME

 MQREGO_VARIABLE_USER_ID

 MQREGO_NO_ALTERATION

 MQREGO_JOIN_SHARED

 MQREGO_JOIN_EXCLUSIVE

 MQREGO_LOCKED

 MQREGO_FULL_RESPONSE

SubName (MQCFST)

Subscription name (parameter identifier: MQCACF_SUBSCRIPTION_NAME).

SubIdentity (MQCFST)

Subscription identity (parameter identifier:

MQCACF_SUBSCRIPTION_IDENTITY).

SubUserData (MQCFST)

Subscription user data (parameter identifier:

MQCACF_SUBSCRIPTION_USER_DATA).

PCF Command Messages

Chapter 14. Writing system management applications 149

StreamName (MQCFST)

Stream name (parameter identifier: MQCACF_STREAM_NAME).

QMgrName (MQCFST)

Subscriber’s queue manager name (parameter identifier:

MQCA_Q_MGR_NAME).

QName (MQCFST)

Subscriber’s queue name (parameter identifier: MQCA_Q_NAME).

Request Update

Topic (MQCFST)

Topic (parameter identifier: MQCACF_TOPIC).

RegistrationOptions (MQCFIN)

Registration options (parameter identifier:

MQIACF_REGISTRATION_OPTIONS).

 The following options can be set:

 MQREGO_CORREL_ID_AS IDENTITY

 MQREGO_VARIABLE_USER_ID

SubName (MQCFST)

Subscription name (parameter identifier: MQCACF_SUBSCRIPTION_NAME).

StreamName (MQCFST)

Stream name (parameter identifier: MQCACF_STREAM_NAME).

QMgrName (MQCFST)

Subscriber’s queue manager name (parameter identifier:

MQCA_Q_MGR_NAME).

QName (MQCFST)

Subscriber’s queue name (parameter identifier: MQCA_Q_NAME).

PCF Command Messages

150 WebSphere MQ Publish/Subscribe User’s Guide

Chapter 15. Finding out about other publishers and

subscribers

Brokers publish information about the publishers and subscribers that are

registered with them. The information is published as a special set of topics,

known as metatopics, within each supported stream. They are published as

persistent messages, and use the default priority for the stream queue (at the last

time the broker started).

Applications can subscribe to this information in the same way as they can register

any other subscription. Whenever the information changes, brokers publish the

changed information in the form of retained publications so that new subscribers

to it receive the current state.

Metatopic command messages can be sent to a broker using the WebSphere MQ

Programmable Command Format (PCF), which is described in Chapter 14,

“Writing system management applications,” on page 141. Publications containing

the metatopic data are sent in PCF format, as are any broker response messages.

This is illustrated in the “Sample program for administration information” on page

157.

Alternatively, metatopic command messages can be sent with the Rules and

Formatting header (RFH), which is described in Chapter 6, “Format of command

messages,” on page 47. In this case any broker response messages are in RFH

format, but publications containing the metatopic data are sent in PCF format.

This chapter discusses the following topics:

v “Metatopics”

v “Subscribing to metatopics” on page 152

v “Authorized metatopics” on page 153

v “Finding out about brokers” on page 154

v “Message format for metatopics” on page 154

Metatopics

Brokers publish information about the publishers and subscribers that are

registered with them. The information is published as a special set of topics,

known as metatopics, within each supported stream.

Each broker publishes on metatopics to each stream to describe the publishers,

subscribers and topics on that stream. Metatopics include subscribers to

metatopics. All metatopic publications are global.

Metatopics always begin with ‘MQ/’, and topics starting with ‘MQ/’ are reserved

for all streams. These metatopic strings are of the form:

v ‘MQ/S/QMgrName/Publishers/Topics’

v ‘MQ/S/QMgrName/Publishers/Summary’

v ‘MQ/S/QMgrName/Publishers/Summary/Topic’

v ‘MQ/S/QMgrName/Publishers/Identities’

v ‘MQ/S/QMgrName/Publishers/Identities/Topic’

v ‘MQ/SA/QMgrName/Publishers/AllIdentities’

v ‘MQ/SA/QMgrName/Publishers/AllIdentities/Topic’

© Copyright IBM Corp. 1998, 2005 151

v ‘MQ/S/QMgrName/Subscribers/Topics’

v ‘MQ/S/QMgrName/Subscribers/Summary’

v ‘MQ/S/QMgrName/Subscribers/Summary/Topic’

v ‘MQ/S/QMgrName/Subscribers/Identities’

v ‘MQ/S/QMgrName/Subscribers/Identities/Topic’

v ‘MQ/SA/QMgrName/Subscribers/AllIdentities’

v ‘MQ/SA/QMgrName/Subscribers/AllIdentities/Topic’

Where:

v QMgrName is the name of the broker’s queue manager. This is 48 characters long

padded with blanks if necessary.

v Topic is any topic for which the broker has a registered publisher or subscriber

(depending on whether the subscription is for publishers or subscribers).

Metatopics that do not include Topic each represent a single metatopic (for one

broker), so a broker receiving a Register Subscriber message for one of these

metatopics generates one retained Publish message as a result (additional retained

Publish messages are generated whenever the information changes). However, for

metatopics that do include Topic, one retained Publish message is generated for

each registered topic that matches the Topic specification (and again further

messages are generated as the information changes).

The strings in the fifth part of the metatopic offer varying levels of detail, as

follows:

Summary

Minimal information including counts. If Topic is included, one message is

generated for each matching topic.

Topics A list of registered topics in a single message.

Identities

Identities of publishers or subscribers, including user ID and time of

registration. If Topic is included, one message is generated for each

matching topic, otherwise all identities are packaged into a single message.

Anonymous publishers or subscribers are not included (this means that no

message is generated for topics that have only anonymous publishers and

subscribers registered).

AllIdentities

This is the equivalent of Identities for authorized metatopics (see

“Authorized metatopics” on page 153) and gives the same information, but

also includes anonymous publishers and subscribers.

 If an application subscribes to an ‘AllIdentities’ metatopic, the application

requires altusr authority for the queue manager, as well as the normal

browse authority for that stream queue.

Subscribing to metatopics

Applications should use this facility carefully because it can produce a large

amount of data. Applications using metatopics are recommended to register

subscriptions with each broker individually (using the

SYSTEM.BROKER.ADMIN.STREAM to determine the queue manager names of the

brokers). These applications are recommended to subscribe only to the information

from that broker and set the MQREGO_PUBLISH_ON_REQUEST option in the

Register Subscriber message and use Request Update to minimize network traffic.

Metatopics

152 WebSphere MQ Publish/Subscribe User’s Guide

Using wild cards

Metatopics describing subscribers include information about wild card

subscriptions. This is an exception to the rule that publications should not include

wild cards in their topics.

In subscriptions to metatopics, wild cards can be used in the usual way. For

example, if the metatopic ‘MQ/S/QM1/Publishers/S*’ is specified, this matches

‘MQ/S/QM1/Publishers/Summary’ plus all the

‘MQ/S/QM1/Publishers/Summary/Topic’ metatopics (one for each topic

registered implicitly or explicitly for publishers, except those published

anonymously), and the broker sends this number of retained Publish messages as

a result.

If the metatopic ‘MQ/S/QM1/Subscribers/S*’ is specified, the resultant messages

show all the topics registered for subscribers (except those registered

anonymously), including wildcard subscriptions. (The wildcard characters in

metatopics match only wildcard subscriptions.)

A wildcard subscription of the form ‘*’ gives all topics on a stream except the

metatopics. You need to specify at least the first five characters (‘MQ/S/’) to

receive publications about metatopics.

On WebSphere MQ for UNIX systems, you need to prevent the shell from

interpreting the meaning of special characters, for example: *. Depending on the

shell you are using, you might have to enclose the wildcard characters in single

quotation marks or double quotation marks, or use a backslash.

Example requests

The following examples show valid metatopic requests:

v To find out what topics are being published on QM22 in a single Publish

message:

MQ/S/QM22/Publishers/Topics

No information is returned about publishers’ identities.

v To find the identities of each subscriber (except anonymous subscribers) on all

brokers in the network, for any topics starting with ‘Trade/’:

MQ/S/*/Subscribers/Identities/Trade/*

One Publish message is generated for each matching topic, by each broker.

Requesting this much information could have an adverse effect on the

performance of your system.

Authorized metatopics

There is a subclass of metatopics, called authorized metatopics, that are available

only to users with altusr authority for that queue manager. These show the

identities of all publishers and subscribers, including the anonymous ones.

Subscribers (who must be authorized) receive only authorized metatopics by

specifying at least the first six characters ‘MQ/SA/’. A wildcard subscription of the

form ’MQ/S*’ gives no metatopics at all, ‘MQ/SA/*’ gives all the authorized

metatopics and ‘MQ/S/*’ gives all the others.

Subscribing to metatopics

Chapter 15. Finding out about other publishers and subscribers 153

Finding out about brokers

To find out about all brokers, a subscriber can specify a Topic parameter of, say,

‘MQ/S/*/Publishers/Summary’. If no StreamName parameter is specified, this

defaults to the default stream, which all brokers support. At least one message is

received from each broker that is connected. More than one message might be

received from a broker if the state changes. For efficiency, however, it is

recommended to register a subscription with each broker individually.

To determine which brokers support a particular stream, the program can issue the

Register Subscriber command to the SYSTEM.BROKER.ADMIN.STREAM at its

local broker and specify an appropriate StreamSupport topic.

Message format for metatopics

These messages are sent as Publish messages in PCF format with

MQPUBO_RETAIN_PUBLICATION (for ongoing subscriptions registered with

Register Subscriber). In these messages, Command is MQCMD_PUBLISH, and Type

is MQCFT_COMMAND.

The following table summarizes which parameters are included for which

metatopics. An explanation of each parameter follows the table.

Finding out about brokers

154 WebSphere MQ Publish/Subscribe User’s Guide

Table 7. Parameters for publisher and subscriber information messages

Topics Summary Summary

/<Topic>

Identities

1 Identities

/<Topic>

1

Number of messages sent 1 1 1 for each

topic

1 1 for each

topic

StreamName Y Y Y Y Y

Topic Y Y Y Y Y

PublishTimestamp Y Y Y Y Y

BrokerCount Y Y Y Y Y

ApplCount Y Y Y Y Y

AnonymousCount Y Y Y Y Y

RegistrationTopic Y

2 N N

3 N N

3

RegistrationQMgrName N N N Y Y

RegistrationQName N N N Y Y

RegistrationCorrelId N N N Y Y

RegistrationUserIdentifier N N N Y Y

RegistrationRegistrationOptions N N N N Y

RegistrationTime N N N N Y

RegistrationSubName N N N N Y

RegistrationSubUserData N N N N Y

RegistrationSubIdentity N N N N Y

4

Notes:

1. ‘AllIdentities’ subscriptions are the same except that they include anonymous as well as non-anonymous

publishers and subscribers.

2. Repeated for each registered topic.

3. Topic parameter contains the registered topic.

4. Repeated.

Parameters

These parameters might be included in publisher and subscriber information

messages sent by the broker. Table 7 summarizes the parameters that are used for

each metatopic.

SubName (MQCFST)

Subscription Name (parameter identifier: MQCACF_SUBSCRIPTION_NAME).

 Name of the subscription for which this information applies.

SubIdentity (MQCFST)

Subscription identity (parameter identifier:

MQCACF_SUBSCRIPTION_IDENTITY).

 Identity registered to this subscription for which this information applies. Can

be repeated.

SubUserData (MQCFST)

Subscription user data (parameter identifier:

MQCACF_SUBSCRIPTION_USER_DATA).

 User data of the subscription for which this information applies.

Metatopic message format

Chapter 15. Finding out about other publishers and subscribers 155

StreamName (MQCFST)

Stream Name (parameter identifier: MQCACF_STREAM_NAME).

 Name of the stream for which this information applies.

Topic (MQCFST)

Topic (parameter identifier: MQCACF_TOPIC).

 The metatopic under which this publication is published. These are listed in

“Metatopics” on page 151.

PublishTimestamp (MQCFST)

Time this Publish message was generated (parameter identifier:

MQCACF_PUBLISH_TIMESTAMP).

 This is of length 16 characters, in the format YYYYMMDDHHMMSSTH, using Universal

Time.

BrokerCount (MQCFIN)

Number of broker publishers or subscribers (parameter identifier:

MQIACF_BROKER_COUNT).

 Count of publisher or subscriber registrations from brokers, for the specified

topic if this is a ‘MQ/QMgrName/.../Topic’ message.

 For publishers, this count is normally zero, because brokers do not register as

publishers. The role of a broker in acting as a publisher itself for metatopics on

stream queues is not counted, nor is its role as a publisher for administrative

topics on the SYSTEM.BROKER.ADMIN.STREAM stream.

ApplCount (MQCFIN)

Number of application publishers or subscribers (parameter identifier:

MQIACF_APPL_COUNT).

 Count of publisher or subscriber registrations from applications, for the

specified topic if this is a ‘MQ/S/QMgrName/.../Topic’ or

‘MQ/SA/QMgrName/.../Topic’ message. ‘MQ/SA/QMgrName/.../Topic’ includes

anonymous registrations.

AnonymousCount (MQCFIN)

Number of anonymous publishers or subscribers (parameter identifier:

MQIACF_ANONYMOUS_COUNT).

 Count of anonymous publisher or subscriber registrations from applications,

for the specified topic if this is a ‘MQ/SA/QMgrName/.../Topic’ message.

RegistrationTopic (MQCFST)

Topic (parameter identifier: MQCACF_REG_TOPIC).

 A topic for which at least one publisher or subscriber is registered. Wild cards

are not present for publishers, but might be for subscribers.

 This parameter is repeated for as many topics as necessary for

‘MQ/S/QMgrName/Publishers/Topics’ and

‘MQ/S/QMgrName/Subscribers/Topics’ messages. Each topic is present only

once, even if there are several publishers or subscribers registered for the same

topic.

RegistrationQMgrName (MQCFST)

Publisher’s or subscriber’s queue manager name (parameter identifier:

MQCACF_REG_Q_MGR_NAME).

Metatopic message format

156 WebSphere MQ Publish/Subscribe User’s Guide

RegistrationQName (MQCFST)

Publisher’s or subscriber’s queue name (parameter identifier:

MQCACF_REG_Q_NAME).

RegistrationCorrelId (MQCFST)

Publisher’s or subscriber’s correlation identifier (parameter identifier:

MQCACF_REG_CORREL_ID).

 This is a 48-byte character string of hexadecimal characters representing the

contents of the 24-byte binary correlation identifier. Each character in the string

is in the range 0 through 9 or A through F.

 This parameter is present only if the publisher’s or subscriber’s identity

includes a correlation identifier.

RegistrationUserIdentifier (MQCFST)

Publisher’s or subscriber’s user ID (parameter identifier:

MQCACF_REG_USER_ID).

RegistrationRegistrationOptions (MQCFST)

Publisher’s or subscriber’s registration options (parameter identifier:

MQIACF_REG_REG_OPTIONS).

 RegistrationOptions parameter as specified (or defaulted) by the publisher or

subscriber when it registered.

RegistrationTime (MQCFST)

Registration time (parameter identifier: MQCACF_REG_TIME).

 This is of length 16 characters, in the format YYYYMMDDHHMMSSTH, using Universal

Time.

Sample program for administration information

The sample administration program attaches to a broker, subscribes to the

appropriate streams to obtain the required metatopic information, and then

detaches from the broker. The following RegistrationOptions are used:

 MQREGO_ANONYMOUS

 MQREGO_PUBLISH_ON_REQUEST_ONLY

The information listed below can be dumped into a file or to standard output.

v The parent and children for the broker.

v All the streams supported at the broker (unless overridden by the -s option).

v All the subscribers and publishers registered for these streams (unless

overridden by the -p or -u options), with the following parameters:

 StreamName

 Topic (max 255 chars)

 BrokerCount

 ApplCount

 AnonymousCount

 RegistrationQMgrName

 RegistrationQName

 RegistrationCorrelId

 RegistrationUserIdentifier

 RegistrationRegistrationOptions

 RegistrationTime

v All retained messages at the broker for the given topic (only if the -r option is

set), with the following parameters:

 StreamName

Metatopic message format

Chapter 15. Finding out about other publishers and subscribers 157

Topic (max 255 chars)

 StringData (max 255 chars, PCF only)

 IntegerData (PCF only)

 QMgrName

 QName

 SequenceNumber

 PublishTimestamp

 Expiry

Operation

To run the sample administration program, first run amqspsda.tst on the queue

manager. Then enter the following:

 amqspsd options

where options are any of the following:

-l LogFileName

The name of the log file that the information is sent to.

 The default is that output is sent to the screen (stdio).

-m QMgrName

The queue manager name.

 The default is that the default queue manager is used.

-q QName

The name of the queue that is subscribed to.

 The default is that the program attempts to create a permanent-dynamic queue

based on AMQSPSDA.PERMDYN.MODEL.QUEUE. This queue is deleted at

program termination.

-s StreamName

The stream name.

 The default is that all streams are dumped.

-t Topic

The topic.

 The default is that * (all topics) are used as the topic.

-r Topic

Dump retained messages for this topic (* can be used for all topics).

 The default is not to dump retained messages.

-p Dump information for publishers only.

 The default is to dump information for publishers and subscribers.

-u Dump information for subscribers only.

 The default is to dump information for publishers and subscribers.

-a Dump information for anonymous publishers and subscribers.

 The default is to dump information for non-anonymous publishers and

subscribers.

 On successful termination, zero is returned to any calling application.

Sample administration program

158 WebSphere MQ Publish/Subscribe User’s Guide

Example of metatopic information

Here is an example of output from the sample administration program, which was

obtained from a newly created broker using the command:

 amqspsd -m PubSub -r *

It shows two retained messages, one in RFH and one in PCF format.

WebSphere MQ Message Broker Dumper

Start time Wed-22-Dec-2004 10:35:31

Broker Hierarchy

QMgrName:

 PubSub

Parent:

 None

Children:

 None

Streams supported

SYSTEM.BROKER.DEFAULT.STREAM

SYSTEM.BROKER.ADMIN.STREAM

Publishers

StreamName: SYSTEM.BROKER.ADMIN.STREAM

 None

StreamName: SYSTEM.BROKER.DEFAULT.STREAM

 Topic: Topic 3

 BrokerCount: 0

 ApplCount: 1

 AnonymousCount: 0

 RegistrationQMgrName: PubSub

 RegistrationQName: Q2

 RegistrationUserIdentifier: hgdd

 RegistrationRegistrationOptions: 0 : MQREGO_NONE

 RegistrationTime: 1998111810350435

 Topic: Topic 2

 BrokerCount: 0

 ApplCount: 1

 AnonymousCount: 0

 RegistrationQMgrName: PubSub

 RegistrationQName: Q2

 RegistrationUserIdentifier: hgdd

 RegistrationRegistrationOptions: 0 : MQREGO_NONE

 RegistrationTime: 1998111810350435

 Topic: Topic 1

 BrokerCount: 0

 ApplCount: 1

 AnonymousCount: 0

 RegistrationQMgrName: PubSub

 RegistrationQName: Q1

 RegistrationUserIdentifier: hgdd

 RegistrationRegistrationOptions: 0 : MQREGO_NONE

 RegistrationTime: 1998111810341148

Subscribers

StreamName: SYSTEM.BROKER.ADMIN.STREAM

 Topic: MQ/PubSub /StreamSupport

 BrokerCount: 0

 ApplCount: 1

 AnonymousCount: 0

 RegistrationQMgrName: PubSub

 RegistrationQName: SYSTEM.BROKER.INTER.BROKER.COMMUNICATIONS

Sample administration program

Chapter 15. Finding out about other publishers and subscribers 159

RegistrationCorrellId: 414D5159010100000000000000000000000000000000

 RegistrationUserIdentifier: mqm

 RegistrationRegistrationOptions: 17 : MQREGO_CORREL_ID_AS_IDENTITY

 MQREGO_NEW_PUBLICATIONS_ONLY

 RegistrationTime: 1998111810330750

 Topic: MQ/S/PubSub /Subscribers/Identities/*

 BrokerCount: 0

 ApplCount: 1

 AnonymousCount: 1

StreamName: SYSTEM.BROKER.DEFAULT.STREAM

 Topic: MQ/S/PubSub /Subscribers/Identities/*

 BrokerCount: 0

 ApplCount: 1

 AnonymousCount: 1

Retained messages

StreamName: SYSTEM.BROKER.DEFAULT.STREAM

 RFH Message

 Expiry: -1

 Topic: Topic 2

 Topic: Topic 3

 QMgrName: PubSub

 QName: Q2

 SequenceNumber: None

 PublishTimestamp: None

 **** Message **** length - 92 bytes

 0000: 0100 0000 2400 0000 0100 0000 0000 0000 ’....¢...........’

 0010: 0100 0000 0100 0000 0000 0000 0000 0000 ’................’

 0020: 0200 0000 0400 0000 2800 0000 DB0B 0000 ’........(...³...’

 0030: 0000 0000 1200 0000 4D79 2072 6574 6169 ’........My retai’

 0040: 6E65 6420 7374 7269 6E67 0000 0300 0000 ’ned string......’

 0050: 1000 0000 3804 0000 15CD 5B07 ’....8...."£. ’

 PCF Message

 Expiry: -1

 Topic: Topic 1

 QMgrName: PubSub

 QName: Q1

 SequenceNumber: None

 PublishTimestamp: None

 IntegerData: 123456789

 StringData: My retained string

Sample administration program

160 WebSphere MQ Publish/Subscribe User’s Guide

Part 5. Appendixes

© Copyright IBM Corp. 1998, 2005 161

162 WebSphere MQ Publish/Subscribe User’s Guide

Appendix A. Header files

This appendix lists the C-language header files necessary for publish/subscribe

applications:

cmqpsc.h

Contains string constants for publish/subscribe messages using the

MQRFH header.

cmqc.h

Contains elementary data types, and some named constants for events and

PCF commands.

cmqcfc.h

Contains named constants specific to publish/subscribe messages,

definitions for PCF structures, and additional named constants for events

and PCF commands.

cmqbc.h

Contains definitions unique to the MQAI. This file is required only for

metatopics and system management functions.

© Copyright IBM Corp. 1998, 2005 163

Header files

164 WebSphere MQ Publish/Subscribe User’s Guide

Appendix B. Notices

This information was developed for products and services offered in the United

States. IBM may not offer the products, services, or features discussed in this

information in other countries. Consult your local IBM representative for

information on the products and services currently available in your area. Any

reference to an IBM product, program, or service is not intended to state or imply

that only that IBM product, program, or service may be used. Any functionally

equivalent product, program, or service that does not infringe any IBM intellectual

property right may be used instead. However, it is the user’s responsibility to

evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this information. The furnishing of this information does not give you

any license to these patents. You can send license inquiries, in writing, to:

 IBM Director of Licensing

 IBM Corporation

 North Castle Drive

 Armonk, NY 10504-1785

 U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

 IBM World Trade Asia Corporation

 Licensing

 2-31 Roppongi 3-chome, Minato-ku

 Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the information. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

information at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1998, 2005 165

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

 IBM United Kingdom Laboratories,

 Mail Point 151,

 Hursley Park,

 Winchester,

 Hampshire,

 England

 SO21 2JN.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Programming License Agreement, or any equivalent agreement

between us.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

Trademarks

The following terms are trademarks of International Business Machines

Corporation in the United States, other countries, or both:

 AIX IBM IBMLink™

iSeries MQSeries OS/2

SupportPac Tivoli WebSphere

z/OS

Windows and the Windows logo are trademarks of Microsoft® Corporation in the

United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the

United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or

both.

Other company, product or service names may be the trademarks or service marks

of others.

Notices

166 WebSphere MQ Publish/Subscribe User’s Guide

Index

A
access control

defining 101

using streams 11

AccountingToken parameter
publications forwarded by broker 31

adding a broker to a network 109

adding a stream 107

adding and removing brokers 110

amqsfmda.tst sample 100

application
sample program 92

Application Messaging Interface 32

application programming 21

applications, system management 141

ApplIdentityData parameter
publications forwarded by broker 31

ApplOriginData parameter
publications forwarded by broker 31

authorization checks 41, 101

B
backup 101

broker
adding to a network 109

administration messages 141

backup 101

configuration parameters 102

controlling 107

deleting from a network 109

deregistering as a publisher 39

deregistering as subscriber 44

exit program 129

finding children 143

finding out about 154

finding parent 143

finding supported streams 143

interactions with subscriber and publisher 22

introduction 3

registering as a publisher 35

registering as a subscriber 41

response message 86

routing exit 129

setting up 99

stanza of qm.ini 102

broker deleted message 142

broker hierarchy, example 11

broker networks 11

broker queues, defining 99

broker response message 86

C
child broker 11

children messages 143

ChkPtActiveCount parameter 104

ChkPtMsgSize parameter 103

ChkPtRestartCount parameter 104

class of service 11

clear broker’s memory, control command 114

clrmqbrk command 114

cluster queues 31, 99

CodedCharSetId field
MQRFH structure 49

Command field
MQCFH structure 144

command message
name/value pairs 57

PCF format 141

RFH format 47

structure 21

Command parameter
Broker response message 86

Delete Publication command 58

Deregister Publisher command 60

Deregister Subscriber command 62

Publish command 65

Register Publisher command 70

Register Subscriber command 72

Request Update command 80

CompCode field
MQCFH structure 144

CompCode parameter
Broker response message 86

compiling, routing exit 137

configuration file 102

control commands
clear broker’s memory (clrmqbrk) 114

deregister or delete broker function (dltmqbrk) 117

display broker status (dspmqbrk) 119

end broker function (endmqbrk) 121

migrate broker to WebSphere Business Integration Brokers

function (migmqbrk) 123

start broker function (strmqbrk) 125

Control field
MQCFH structure 144

controlling brokers 107

CorrelId parameter
message sent to broker 29

publications forwarded by broker 30

response messages 84

creating queues 99

D
data conversion 31

data, publication 53

dead-letter queue 101

dead-letter queue processing 83

defining queues 99

Delete Publication command 58, 147

DeleteOptions parameter
Broker response message 87

Delete Publication command 58

deleting a broker from a network 109

deleting a stream 108

deleting publications 38

deregister or delete broker function, control command 117

Deregister Publisher command 60, 147

Deregister Subscriber command 62, 147

© Copyright IBM Corp. 1998, 2005 167

deregistering as a publisher 39

deregistering as a subscriber 44

DestinationQMgrName field
MQPXP structure 131

DestinationQName field
MQPXP structure 131

DestinationType field
MQPXP structure 131

DiscardNonPersistentInputMsg parameter 105

DiscardNonPersistentPublication parameter 106

DiscardNonPersistentResponse parameter 105

display broker status, control command 119

DLQNonPersistentPublication parameter 106

DLQNonPersistentResponse parameter 105

dltmqbrk command 117

double-byte character sets 53

dspmqbrk command 119

E
Encoding field

MQRFH structure 48

end broker function, control command 121

endmqbrk command 121

error codes
Broker response message 88

Delete Publication command 58

Deregister Publisher command 61

Deregister Subscriber command 64

Publish command 69

Register Publisher command 71

Register Subscriber command 79

Request Update command 81

error handling 83

error response 85

ErrorId parameter
Broker response message 87

ErrorPos parameter
Broker response message 87

event publications 14

example
administration information program 157

application program 92

broker hierarchy 11

Broker response message 88

clrmqbrk command 115

Delete Publication command 58

Deregister Publisher command 61

Deregister Subscriber command 64

dltmqbrk command 118

dspmqbrk command 119

endmqbrk command 122

metatopic information 159

metatopic requests 153

migmqbrk command 124

multiple broker configuration 4

multiple subscriptions 12

NameValueString 51

propagation of publications 13

propagation of subscriptions 12

publication data 53

Publish command 69

qm.ini broker stanza 102

Register Publisher command 71

Register Subscriber command 78

Request Update command 81

routing exit 137

example (continued)
simple broker configuration 4

strmqbrk command 126

exit program 129

ExitData field
MQPXP structure 131

ExitId field
MQPXP structure 131

ExitNumber field
MQPXP structure 132

ExitParms parameter 129

ExitReason field
MQPXP structure 132

ExitResponse field
MQPXP structure 132

ExitResponse2 field
MQPXP structure 133

ExitUserArea field
MQPXP structure 133

Expiry parameter
message sent to broker 30

publications forwarded by broker 30

F
Feedback field

MQPXP structure 133

Flags field
MQRFH structure 49

Format field
MQRFH structure 49

Format parameter
message sent to broker 29

publications forwarded by broker 30

response messages 84

G
global publications

introduction 14

publishing 38

group messages 31

GroupId parameter 106

H
header files 163

HeaderLength field
MQPXP structure 134

I
identity of publisher and subscriber 27

identity of subscription 28

initialization file 102

IntegerData parameter
Publish command 65

internal queues 101

J
JmsStreamPrefix parameter 106

168 WebSphere MQ Publish/Subscribe User’s Guide

L
limitations 6, 7, 31

local publications
introduction 14

publishing 38

M
managing brokers 107

MaxMsgRetryCount parameter 102

message descriptor (MQMD)
message sent to broker 29

publications forwarded by broker 30

response messages 84

message flow 22

message format
broker response 86

commands 47, 57

metatopic 154

message order 26

messages
broker administration 141

group 31

response 84

segmented 31

metatopics 151

example 159

sample program 157

migmqbrk command 123

migrate broker to WebSphere Business Integration Brokers

function, control command 123

MQ_PUBSUB_ROUTING_EXIT call 129

MQBACK, routing exit 137

MQCFH structure 143

MQCFT_* values 143

MQCMIT, routing exit 137

MQDISC, routing exit 136

MQFB_* values 134

MQMD (message descriptor)
message sent to broker 29

publications forwarded by broker 30

response messages 84

MQPXP structure 130

MQPXP_* values 135

MQRFH 47

MQRFH_* values 48, 49

MQRFH_DEFAULT 50

MQXCC_* values 132

MQXR_* values 132

MQXUA_* values 133

MsgDescPtr field
MQPXP structure 134

MsgId parameter
response messages 85

MsgInLength field
MQPXP structure 134

MsgInPtr field
MQPXP structure 134

MsgOutLength field
MQPXP structure 134

MsgOutPtr field
MQPXP structure 134

MsgSeqNumber field
MQCFH structure 144

MsgType parameter
message sent to broker 29

MsgType parameter (continued)
publications forwarded by broker 30

response messages 85

multiple subscriptions, example 12

N
name of subscription 28

NameValueString 51

NameValueString field 49

network
adding a broker 109

broker 11

deleting a broker 109

O
OK response 85

OpenCacheExpiry parameter 103

OpenCacheSize parameter 103

P
ParameterCount field

MQCFH structure 144

ParameterId parameter
Broker response message 87

parent broker 11

parent messages 143

PCF definitions
command messages 146

Delete Publication 147

Deregister Publisher 147

Deregister Subscriber 147

Publish 148

Register Publisher 148

Register Subscriber 149

Request Update 150

persistence 31

Persistence parameter
publications forwarded by broker 30

response messages 85

Priority parameter
publications forwarded by broker 30

response messages 85

problem determination 88

publication data 53

publication propagation, example 13

PublicationOptions parameter
Broker response message 87

Publish command 65

publications
customizing 129

deleting 38

Publish command 65, 148

publish/subscribe
command messages 47, 57

exit structure 130

PublishBatchInterval parameter 103

PublishBatchSize parameter 103

publisher
broker restart 37

changing registration 37

deregistering with the broker 39

exit program 129

identity 27

Index 169

publisher (continued)
interactions with subscriber and broker 22

introduction 3

registering with the broker 35

writing applications 35

publisher information messages 151

publishing information 37

PublishTimestamp parameter
Publish command 66

PutApplName parameter
publications forwarded by broker 31

response messages 85

PutApplType
publications forwarded by broker 31

PutApplType parameter
response messages 85

PutDate parameter
publications forwarded by broker 31

PutTime parameter
publications forwarded by broker 31

Q
qm.ini 102

QMgrName field
MQPXP structure 135

QMgrName parameter
Broker response message 87

Deregister Publisher command 60

Deregister Subscriber command 62

Publish command 67

Register Publisher command 70

Register Subscriber command 72

Request Update command 80

QName parameter
Broker response message 87

Deregister Publisher command 60

Deregister Subscriber command 62

Publish command 67

Register Publisher command 70

Register Subscriber command 72

Request Update command 80

queue manager initialization file 102

queues
cluster 31

dead letter 101

internal 101

stream 100

SYSTEM.BROKER.ADMIN.STREAM 100

SYSTEM.BROKER.CONTROL.QUEUE 99

SYSTEM.BROKER.DEFAULT.STREAM 99

SYSTEM.BROKER.MODEL.STREAM 100

R
reason codes

PCF messages 145

Reason field
MQCFH structure 144

Reason parameter
Broker response message 86

ReasonText parameter
Broker response message 86

Register Publisher command 70, 148

Register Subscriber command 72, 149

registering as a publisher 35

registering as a subscriber 41

registration
changing for a publisher 37

changing for subscriber 43

RegistrationOptions parameter
Broker response message 87

Deregister Publisher command 60

Deregister Subscriber command 62

Publish command 67

Register Publisher command 70

Register Subscriber command 72

Request Update command 80

ReplyToQ parameter
message sent to broker 30

publications forwarded by broker 30

ReplyToQMgr parameter
message sent to broker 30

publications forwarded by broker 30

Report parameter
message sent to broker 29

publications forwarded by broker 30

response messages 85

request update
message flow 23

Request Update command 80, 150

requesting information 43

response messages 84

retained publication
introduction 14

publishing 38

return codes
clrmqbrk command 115

dltmqbrk command 118

dspmqbrk command 119

endmqbrk command 122

migmqbrk command 124

strmqbrk command 126

RFH definitions
Delete Publication 58

Deregister Publisher 60

Deregister Subscriber 62

Publish 65

Register Publisher 70

Register Subscriber 72

Request Update 80

root broker 11

routing exit 129

RoutingExitAuthorityCheck parameter 104

RoutingExitConnectType parameter 104

RoutingExitData parameter 105

RoutingExitPath parameter 104

rules and formatting header
definition 47

use of 51

S
sample program

administration information 157

application 92

Application Messaging Interface 96

routing exit 137

security, setting up 101

segmented messages 31

SequenceNumber parameter
Publish command 68

start broker function, control command 125

170 WebSphere MQ Publish/Subscribe User’s Guide

starting a broker 107

state publications 14

stopping a broker 107

stream
adding 107

deleting 108

finding which are supported 143

implementation 10

introduction 3

reasons for using 10

stream deleted message 142

stream queues 100

stream support messages 143

StreamName field
MQPXP structure 135

StreamName parameter
Broker response message 88

Delete Publication command 58

Deregister Publisher command 60

Deregister Subscriber command 63

Publish command 68

Register Publisher command 71

Register Subscriber command 77

Request Update command 81

StreamsPerProcess parameter 102

StringData parameter
Publish command 68

strmqbrk command 125

StrucId field
MQPXP structure 135

MQRFH structure 48

StrucLength field
MQCFH structure 143

MQRFH structure 48

structures
MQCFH 143

MQPXP 130

MQRFH 47

SubIdentity parameter
Deregister Subscriber command 63

Register Subscriber command 77

SubName parameter
Deregister Subscriber command 63

Register Subscriber command 78

Request Update command 81

subscriber
broker restart 43

changing registration 43

deregistering with the broker 44

identity 27

interactions with publisher and broker 22

introduction 3

message arrival order 26

registering with the broker 41

writing applications 41

subscriber information messages 151

subscribing to metatopics 152

subscription
identity 28

name 28

subscription deregistered message 142

subscription propagation, example 12

subscriptions
passing between brokers 12

SubUserData parameter
Register Subscriber command 78

SyncPointIfPersistent parameter 105

system design 9

system management programs 141

SYSTEM.BROKER.ADMIN.STREAM 100

SYSTEM.BROKER.CONTROL.QUEUE 99

SYSTEM.BROKER.DEFAULT.STREAM 99

SYSTEM.BROKER.MODEL.STREAM 100

T
threads, routing exit 136

Topic parameter
Broker response message 88

Delete Publication command 58

Deregister Publisher command 61

Deregister Subscriber command 64

Publish command 65

Register Publisher command 70

Register Subscriber command 72

Request Update command 80

topics
introduction 3

using wildcards 9

triggering a broker 107

Type field
MQCFH structure 143

U
unit of work 31

UserId parameter
Broker response message 88

publications forwarded by broker 30

V
Version field

MQCFH structure 143

MQPXP structure 135

MQRFH structure 48

W
Warning response 85

WebSphere Business Integration Brokers, relationship with 7

WebSphere MQ, relationship with 6

wild cards
using with metatopics 153

wildcards 9

writing applications 21

Index 171

172 WebSphere MQ Publish/Subscribe User’s Guide

Sending your comments to IBM

If you especially like or dislike anything about this book, please use one of the

methods listed below to send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on

the accuracy, organization, subject matter, or completeness of this book.

Please limit your comments to the information in this book and the way in which

the information is presented.

To make comments about the functions of IBM products or systems, talk to your

IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or

distribute your comments in any way it believes appropriate, without incurring

any obligation to you.

You can send your comments to IBM in any of the following ways:

v By mail, to this address:

User Technologies Department (MP095)

IBM United Kingdom Laboratories

Hursley Park

WINCHESTER,

Hampshire

SO21 2JN

United Kingdom
v By fax:

– From outside the U.K., after your international access code use

44–1962–816151

– From within the U.K., use 01962–816151
v Electronically, use the appropriate network ID:

– IBM Mail Exchange: GBIBM2Q9 at IBMMAIL

– IBMLink: HURSLEY(IDRCF)

– Internet: idrcf@hursley.ibm.com

Whichever method you use, ensure that you include:

v The publication title and order number

v The topic to which your comment applies

v Your name and address/telephone number/fax number/network ID.

© Copyright IBM Corp. 1998, 2005 173

174 WebSphere MQ Publish/Subscribe User’s Guide

���

SC34-6606-00

Sp
in
e
in
fo
rm
at
io
n:

 �
�

�

W
eb

Sp
he

re

M

Q

W
eb

Sp
he

re

M

Q

Pu

bl
ish

/S
ub

sc
ri

be

U

se
r’

s
G

ui
de

Ve

rs
io

n
6.

0

	Contents
	Figures
	Tables
	About this book
	Who this book is for
	What you need to know to understand this book
	How to use this book
	Terms used in this book
	Appearance of text in this book
	How to read syntax diagrams

	Summary of changes
	Changes for this edition (SC34-6606-00)

	Part 1. Introduction and system design
	Chapter 1. Introduction
	What is publish/subscribe?
	What are the components involved?
	Example of a single broker configuration
	Example of a multiple broker configuration

	How does it work?
	How WebSphere MQ Publish/Subscribe relates to WebSphere MQ
	How WebSphere MQ Publish/Subscribe relates to WebSphere Business Integration Message Broker and WebSphere Business Integration Event Broker

	Chapter 2. System design
	Topics
	Matching topic strings

	Streams
	Broker networks
	Passing subscription information between brokers

	Different types of publication
	Local and global publications
	State and event information
	Retained publications

	Sample application

	Part 2. Writing applications
	Chapter 3. Introduction to writing applications
	Message flows
	Simplified message flow

	Message ordering
	Ensuring that messages are retrieved in the correct order

	Publisher and subscriber identity
	Subscription name and identity

	The message descriptor
	Messages sent to the broker
	Publications forwarded by the broker

	Persistence and units of work
	Limitations
	Group messages
	Segmented messages
	Cluster queues
	Data conversion of MQRFH structure

	Using the Application Messaging Interface
	AMI publish/subscribe functions
	Publish command
	Register Subscriber command
	Deregister Subscriber command
	Receive a publication

	Chapter 4. Writing publisher applications
	Registering with the broker
	Choosing not to register
	Options you can specify when registering as a publisher
	Queue name
	Selecting a stream
	Publisher identity
	Registration scope
	Registration expiry

	Broker restart
	Changing an application’s registration

	Publishing information
	Publication data
	Including data in the message
	Referring to data in the message

	Retained publications
	Expiry of retained publications

	Publishing locally and globally

	Deleting information
	Deregistering with the broker

	Chapter 5. Writing subscriber applications
	Registering as a subscriber
	Subscriber queues
	Options you can specify when registering as a subscriber
	Queue name
	Selecting a stream
	Subscriber identity
	Subscription scope
	Subscription expiry

	Broker restart
	Changing an application’s registration

	Requesting information
	Requesting information from the broker
	Requesting information from a publisher

	Deregistering as a subscriber

	Chapter 6. Format of command messages
	MQRFH – Rules and formatting header
	Fields
	Structure definition in C

	Publish/Subscribe name/value strings
	Options using string constants
	Options using integer constants
	Sending a command message with the RFH structure

	Publication data
	Double-byte character sets

	Chapter 7. Publish/Subscribe command messages
	Delete Publication
	Required parameters
	Optional parameters
	Example
	Error codes

	Deregister Publisher
	Required parameters
	Optional parameters
	Example
	Error codes

	Deregister Subscriber
	Required parameters
	Optional parameters
	Example
	Error codes

	Publish
	Required parameters
	Optional parameters
	Example
	Error codes

	Register Publisher
	Required parameters
	Optional parameters
	Example
	Error codes

	Register Subscriber
	Required parameters
	Optional parameters
	Example
	Error codes

	Request Update
	Required parameters
	Optional parameters
	Example
	Error codes

	Chapter 8. Error handling and response messages
	Error handling by the broker
	Response messages
	Message descriptor for response messages
	Types of error response
	OK response
	Warning response
	Error response

	Broker responses
	Standard parameters
	Optional parameters
	Examples
	Error codes applicable to all commands

	Problem determination

	Chapter 9. Sample programs
	Sample application
	Running the application
	Possible extensions

	Application Messaging Interface samples

	Part 3. Managing the broker
	Chapter 10. Setting up a broker
	Broker queues
	System queues
	Other stream queues
	SYSTEM.BROKER.MODEL.STREAM

	Internal queues
	Dead-letter queue

	Other considerations
	Access control
	Backup

	Broker configuration stanza
	Broker configuration parameters

	Chapter 11. Controlling the broker
	Starting a broker
	Using triggering to start the broker

	Stopping a broker
	Displaying the status of a broker
	Adding a stream
	Creating a stream queue
	Informing other brokers about the stream

	Deleting a stream
	Deleting a stream on an isolated broker
	Deleting a stream on a broker that is part of a network

	Adding a broker to a network
	Deleting a broker from the network
	Problems when deleting brokers
	Deleting a broker that has a child broker

	Sequence of commands for adding and deleting brokers

	Chapter 12. Control commands
	clrmqbrk (Clear broker’s memory of a neighboring target broker)
	dltmqbrk (Delete broker)
	dspmqbrk (Display broker status)
	endmqbrk (End broker function)
	migmqbrk (Migrate broker to WebSphere Business Integration Brokers)
	strmqbrk (Start broker function)

	Chapter 13. Message broker exit
	Publish/subscribe routing exit
	Parameters
	Usage notes
	C invocation

	Publish/subscribe routing exit parameter structure
	Fields
	C declaration

	Writing a publish/subscribe routing exit program
	Limitations on WebSphere MQ work done in the routing exit
	Security considerations

	Compiling a publish/subscribe routing exit program
	Sample routing exit

	Part 4. System programming
	Chapter 14. Writing system management applications
	Format of broker administration messages
	Subscription deregistered message
	Stream deleted message
	Broker deleted message
	Stream support messages
	Children messages
	Parent messages

	MQCFH - PCF header
	Reason codes returned from publish/subscribe messages

	PCF Command Messages
	Delete Publication
	Deregister Publisher
	Deregister Subscriber
	Publish
	Register Publisher
	Register Subscriber
	Request Update

	Chapter 15. Finding out about other publishers and subscribers
	Metatopics
	Subscribing to metatopics
	Using wild cards
	Example requests

	Authorized metatopics
	Finding out about brokers
	Message format for metatopics
	Parameters

	Sample program for administration information
	Operation
	Example of metatopic information

	Part 5. Appendixes
	Appendix A. Header files
	Appendix B. Notices
	Trademarks

	Index
	Sending your comments to IBM

